45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Role of Headwater Streams in Downstream Water Quality1

          Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terrestrial reserve networks do not adequately represent aquatic ecosystems.

            Protected areas are a cornerstone of conservation and have been designed largely around terrestrial features. Freshwater species and ecosystems are highly imperiled, but the effectiveness of existing protected areas in representing freshwater features is poorly known. Using the inland waters of Michigan as a test case, we quantified the coverage of four key freshwater features (wetlands, riparian zones, groundwater recharge, rare species) within conservation lands and compared these with representation of terrestrial features. Wetlands were included within protected areas more often than expected by chance, but riparian zones were underrepresented across all (GAP 1-3) protected lands, particularly for headwater streams and large rivers. Nevertheless, within strictly protected lands (GAP 1-2), riparian zones were highly represented because of the contribution of the national Wild and Scenic Rivers Program. Representation of areas of groundwater recharge was generally proportional to area of the reserve network within watersheds, although a recharge hotspot associated with some of Michigan's most valued rivers is almost entirely unprotected. Species representation in protected areas differed significantly among obligate aquatic, wetland, and terrestrial species, with representation generally highest for terrestrial species and lowest for aquatic species. Our results illustrate the need to further evaluate and address the representation of freshwater features within protected areas and the value of broadening gap analysis and other protected-areas assessments to include key ecosystem processes that are requisite to long-term conservation of species and ecosystems. We conclude that terrestrially oriented protected-area networks provide a weak safety net for aquatic features, which means complementary planning and management for both freshwater and terrestrial conservation targets is needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A real-time, interactive steering environment for integrated ground water modeling.

              We present in this note an innovative software environment, called Interactive Ground Water (IGW), for unified deterministic and stochastic ground water modeling. Based on efficient computational algorithms, IGW allows simulating three-dimensional (3D) unsteady flow and transport in saturated media subject to systematic and "random" stresses and geological and chemical heterogeneity. Adopting a new computing paradigm, IGW eliminates the fragmentation in the traditional modeling schemes and allows fully utilizing today's dramatically increased computing power. For many problems, IGW enables real-time modeling, visualization, mapping, and analysis. The software environment functions as a "numerical laboratory" in which an investigator may freely explore the following: creating visually an aquifer system of desired configurations, interactively applying stresses and boundary conditions, and then investigating and visualizing on the fly the geology and flow and transport dynamics. At any time, a researcher can pause to interact dynamically with virtually any aspects of the modeling process and then resume the integrated visual exploration; he or she can initiate, pause, or resume particle tracking, plume modeling, subscale modeling, stochastic modeling, monitoring, and budget analyses. IGW continually provides results that are dynamically processed, overlaid, and displayed. It dynamically merges modeling inputs and outputs into composite two-dimensional/3D images-integrating related data to provide a more complete view of the complex interplay among the geology, hydrology, flow system, and transport. These unique capabilities of real-time modeling, steering, analysis, and mapping expand the utility of models as tools for research, education, and professional investigations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                9 October 2015
                2015
                : 10
                : 10
                : e0140430
                Affiliations
                [1 ]Department of Civil & Environmental Engineering, Michigan State University, East Lansing, Michigan, United States of America
                [2 ]The Nature Conservancy, Lansing, Michigan, United States of America
                University of Waterloo, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PVS SGL. Performed the experiments: PVS. Analyzed the data: PVS SGL. Contributed reagents/materials/analysis tools: PVS HSL SGL. Wrote the paper: PVS ZKC PJD MEH CAM SGL.

                Article
                PONE-D-15-05341
                10.1371/journal.pone.0140430
                4599834
                26452279
                0a4c82d4-1cbc-4280-9471-f915b289b262
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 4 February 2015
                : 26 September 2015
                Page count
                Figures: 11, Tables: 3, Pages: 22
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article