59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The daily rhythm of cortisol secretion is relatively stable and primarily under the influence of the circadian clock. Nevertheless, several other factors affect hypothalamo-pituitary-adrenal (HPA) axis activity. Sleep has modest but clearly detectable modulatory effects on HPA axis activity. Sleep onset exerts an inhibitory effect on cortisol secretion while awakenings and sleep offset are accompanied by cortisol stimulation. During waking, an association between cortisol secretory bursts and indices of central arousal has also been detected. Abrupt shifts of the sleep period induce a profound disruption in the daily cortisol rhythm, while sleep deprivation and/or reduced sleep quality seem to result in a modest but functionally important activation of the axis. HPA hyperactivity is clearly associated with metabolic, cognitive and psychiatric disorders and could be involved in the well-documented associations between sleep disturbances and the risk of obesity, diabetes and cognitive dysfunction. Several clinical syndromes, such as insomnia, depression, Cushing's syndrome, sleep disordered breathing (SDB) display HPA hyperactivity, disturbed sleep, psychiatric and metabolic impairments. Further research to delineate the functional links between sleep and HPA axis activity is needed to fully understand the pathophysiology of these syndromes and to develop adequate strategies of prevention and treatment.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: not found
          • Article: not found

          Diagnostic and statistical manual of mental disorders.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress.

              The stress system coordinates the adaptive responses of the organism to stressors of any kind.(1). The main components of the stress system are the corticotropin-releasing hormone (CRH) and locus ceruleus-norepinephrine (LC/NE)-autonomic systems and their peripheral effectors, the pituitary-adrenal axis, and the limbs of the autonomic system. Activation of the stress system leads to behavioral and peripheral changes that improve the ability of the organism to adjust homeostasis and increase its chances for survival. The CRH and LC/NE systems stimulate arousal and attention, as well as the mesocorticolimbic dopaminergic system, which is involved in anticipatory and reward phenomena, and the hypothalamic beta-endorphin system, which suppresses pain sensation and, hence, increases analgesia. CRH inhibits appetite and activates thermogenesis via the catecholaminergic system. Also, reciprocal interactions exist between the amygdala and the hippocampus and the stress system, which stimulates these elements and is regulated by them. CRH plays an important role in inhibiting GnRH secretion during stress, while, via somatostatin, it also inhibits GH, TRH and TSH secretion, suppressing, thus, the reproductive, growth and thyroid functions. Interestingly, all three of these functions receive and depend on positive catecholaminergic input. The end-hormones of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoids, on the other hand, have multiple roles. They simultaneously inhibit the CRH, LC/NE and beta-endorphin systems and stimulate the mesocorticolimbic dopaminergic system and the CRH peptidergic central nucleus of the amygdala. In addition, they directly inhibit pituitary gonadotropin, GH and TSH secretion, render the target tissues of sex steroids and growth factors resistant to these substances and suppress the 5' deiodinase, which converts the relatively inactive tetraiodothyronine (T(4)) to triiodothyronine (T(3)), contributing further to the suppression of reproductive, growth and thyroid functions. They also have direct as well as insulin-mediated effects on adipose tissue, ultimately promoting visceral adiposity, insulin resistance, dyslipidemia and hypertension (metabolic syndrome X) and direct effects on the bone, causing "low turnover" osteoporosis. Central CRH, via glucocorticoids and catecholamines, inhibits the inflammatory reaction, while directly secreted by peripheral nerves CRH stimulates local inflammation (immune CRH). CRH antagonists may be useful in human pathologic states, such as melancholic depression and chronic anxiety, associated with chronic hyperactivity of the stress system, along with predictable behavioral, neuroendocrine, metabolic and immune changes, based on the interrelations outlined above. Conversely, potentiators of CRH secretion/action may be useful to treat atypical depression, postpartum depression and the fibromyalgia/chronic fatigue syndromes, all characterized by low HPA axis and LC/NE activity, fatigue, depressive symptomatology, hyperalgesia and increased immune/inflammatory responses to stimuli.
                Bookmark

                Author and article information

                Journal
                Int J Endocrinol
                IJE
                International Journal of Endocrinology
                Hindawi Publishing Corporation
                1687-8337
                1687-8345
                2010
                9 June 2010
                : 2010
                : 759234
                Affiliations
                Sleep, Chronobiology and Neuroendocrinology Research Laboratory, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
                Author notes

                Academic Editor: Deborah Suchecki

                Article
                10.1155/2010/759234
                2902103
                20628523
                0a511e5d-eb96-4b19-b2b5-1c7bdaadc2c0
                Copyright © 2010 Marcella Balbo et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 December 2009
                : 27 March 2010
                Categories
                Review Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article