23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation

      , ,
      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Cretaceous radiation of angiosperms initiated a major reorganization of terrestrial plant communities as dominance by pteridophytic and gymnospermic groups eventually gave way to dominance by angiosperms. Previously, patterns of biotic replacement have been assessed using measures based on taxonomic diversity data. However, using measures of both abundance and diversity to investigate replacement patterns provides more information about macroecological change in the fossil record than either can provide alone. Analyses of an updated and expanded database of North American palynological samples from Cretaceous sediments document a rapid increase in angiosperm diversity and abundance within individual fossil palynofloras (representing local/subregional vegetation). New analyses of floristic diversity patterns support previous results and indicate that the decline of free-sporing plants is more pronounced than the decline of gymnosperms. In contrast, analyses of abundance data appear to show that the decline of gymnosperms is far more pronounced than the decline of free-sporing plants. Detailed examination of both data sets segregated by paleolatitude shows that this apparent contradiction reflects biogeographical differences in the patterns of vegetational change (e.g., free-sporing plants declined in abundance at lower latitudes) as well as sampling bias (e.g., greater sampling in the northern region in the Late Cretaceous). Analyses accounting for these biases support the conclusion that as angiosperms radiated, free-sporing plants rather than gymnosperms (in this case, mainly conifers) experienced the most pronounced decline. A thorough understanding of the Cretaceous radiation of angiosperms will require both abundance and diversity data. It also will require expanding the analyses presented here into other geographic regions as well as sampling more completely at all spatial scales.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions

              A three-phase kinetic model with time-specific perturbations is used to describe large-scale patterns in the diversification of Phanerozoic marine families. The basic model assumes that the Cambrian, Paleozoic, and Modern evolutionary faunas each diversified logistically as a consequence of early exponential growth and of later slowing of growth as the ecosystems became filled; it also assumes interaction among the evolutionary faunas such that expansion of the combined diversities of all three faunas above any single fauna's equilibrium caused that fauna's diversity to begin to decline. This basic model adequately describes the diversification of the evolutionary faunas through the Paleozoic Era as well as the asymmetrical rise and fall of background extinction rates through the entire Phanerozoic. Declines in diversity and changes in faunal dominance associated with mass extinctions can be accommodated in the model with short-term accelerations in extinction rates or declines in equilibria. Such accelerations, or perturbations, cause diversity to decline exponentially and then to rebound sigmoidally following release. The amount of decline is dependent on the magnitude and duration of the perturbation, the timing of the perturbation with respect to the diversification of the system, and the system's initial per-taxon rates of diversification and turnover. When applied to the three-phase model, such perturbations describe the changes in diversity and faunal dominance during and after major mass extinctions, the long-term rise in total diversity following the Late Permian and Norian mass extinctions, and the peculiar diversification and then decline of the remnants of the Paleozoic fauna during the Mesozoic and Cenozoic Eras. The good fit of this model to data on Phanerozoic familial diversity suggests that many of the large-scale patterns of diversification seen in the marine fossil record of animal families are simple consequences of nonlinear interrelationships among a small number of parameters that are intrinsic to the evolutionary faunas and are largely (but not completely) invariant through time.
                Bookmark

                Author and article information

                Journal
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                1999
                April 08 2016
                1999
                : 25
                : 3
                : 305-340
                Article
                10.1017/S009483730002131X
                0a6a134f-2524-462f-b8ff-129e629963e8
                © 1999

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article