104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      C1q and Mannose Binding Lectin Engagement of Cell Surface Calreticulin and Cd91 Initiates Macropinocytosis and Uptake of Apoptotic Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Removal of apoptotic cells is essential for maintenance of tissue homeostasis, organogenesis, remodeling, development, and maintenance of the immune system, protection against neoplasia, and resolution of inflammation. The mechanisms of this removal involve recognition of the apoptotic cell surface and initiation of phagocytic uptake into a variety of cell types. Here we provide evidence that C1q and mannose binding lectin (MBL), a member of the collectin family of proteins, bind to apoptotic cells and stimulate ingestion of these by ligation on the phagocyte surface of the multifunctional protein, calreticulin (also known as the cC1qR), which in turn is bound to the endocytic receptor protein CD91, also known as the α-2-macroglobulin receptor. Use of these proteins provides another example of apoptotic cell clearance mediated by pattern recognition molecules of the innate immune system. Ingestion of the apoptotic cells through calreticulin/CD91 stimulation is further shown to involve the process of macropinocytosis, implicated as a primitive and relatively nonselective uptake mechanism for C1q- and MBL-enhanced engulfment of whole, intact apoptotic cells, as well as cell debris and foreign organisms to which these molecules may bind.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies.

          The complement system plays a paradoxical role in the development and expression of autoimmunity in humans. The activation of complement in systemic lupus erythematosus (SLE) contributes to tissue injury. In contrast, inherited deficiency of classical pathway components, particularly C1q (ref. 1), is powerfully associated with the development of SLE. This leads to the hypothesis that a physiological action of the early part of the classical pathway protects against the development of SLE (ref. 2) and implies that C1q may play a key role in this respect. C1q-deficient (C1qa-/-) mice were generated by gene targeting and monitored for eight months. C1qa-/- mice had increased mortality and higher titres of autoantibodies, compared with strain-matched controls. Of the C1qa-/- mice, 25% had glomerulonephritis with immune deposits and multiple apoptotic cell bodies. Among mice without glomerulonephritis, there were significantly greater numbers of glomerular apoptotic bodies in C1q-deficient mice compared with controls. The phenotype associated with C1q deficiency was modified by background genes. These findings are compatible with the hypothesis that C1q deficiency causes autoimmunity by impairment of the clearance of apoptotic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Corpse clearance defines the meaning of cell death.

            While philosophers seek the meaning of life, cell biologists are becoming ever more interested in the meaning of death. Apoptosis marks unwanted cells with 'eat me' signals that direct recognition, engulfment and degradation by phagocytes. Far from being the end of the story, these clearance events allow scavenger cells to confer meaning upon cell death. But if the phagocytic 'spin doctors' receive or transmit the wrong messages, trouble ensues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin.

              Complexes of the heat shock protein gp96 and antigenic peptides are taken up by antigen-presenting cells and presented by MHC class I molecules. In order to explain the unusual efficiency of this process, the uptake of gp96 had been postulated to occur through a receptor, identified recently as CD91. We show here that complexes of peptides with heat shock proteins hsp90, calreticulin, and hsp70 are also taken up by macrophages and dendritic cells and re-presented by MHC class I molecules. All heat shock proteins utilize the CD91 receptor, even though some of the proteins have no homology with each other. Postuptake processing of gp96-chaperoned peptides requires proteasomes and the transporters associated with antigen processing, utilizing the classical endogenous antigen presentation pathway.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                17 September 2001
                : 194
                : 6
                : 781-796
                Affiliations
                [a ]Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
                [b ]Department of Medicine, Health Sciences Center, State University of New York, Stony Brook, Stony Brook, NY 11794
                Article
                001962
                10.1084/jem.194.6.781
                2195958
                11560994
                0a712372-917a-4ffe-816f-5b1afa6da65a
                © 2001 The Rockefeller University Press
                History
                : 28 November 2000
                : 17 July 2001
                : 23 July 2001
                Categories
                Original Article

                Medicine
                macropinocytosis,mbl,c1q,phagocytosis,apoptosis
                Medicine
                macropinocytosis, mbl, c1q, phagocytosis, apoptosis

                Comments

                Comment on this article