45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt Signaling Drives Ectopic Gene Expression and Larval Arrest in the Absence of the Caenorhabditis elegans DREAM Repressor Complex

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1 , prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library.

            The recently completed Caenorhabditis elegans genome sequence allows application of high-throughput (HT) approaches for phenotypic analyses using RNA interference (RNAi). As large phenotypic data sets become available, "phenoclustering" strategies can be used to begin understanding the complex molecular networks involved in development and other biological processes. The current HT-RNAi resources represent a great asset for phenotypic profiling but are limited by lack of flexibility. For instance, existing resources do not take advantage of the latest improvements in RNAi technology, such as inducible hairpin RNAi. Here we show that a C. elegans ORFeome resource, generated with the Gateway cloning system, can be used as a starting point to generate alternative HT-RNAi resources with enhanced flexibility. The versatility inherent to the Gateway system suggests that additional HT-RNAi libraries can now be readily generated to perform gene knockdowns under various conditions, increasing the possibilities for phenome mapping in C. elegans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity.

              The Dishevelled protein regulates many developmental processes in animals ranging from Hydra to humans. Here, we discuss the various known signaling activities of this enigmatic protein and focus on the biological processes that Dishevelled controls. Through its many signaling activities, Dishevelled plays important roles in the embryo and the adult, ranging from cell-fate specification and cell polarity to social behavior. Dishevelled also has important roles in the governance of polarized cell divisions, in the directed migration of individual cells, and in cardiac development and neuronal structure and function.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                16 December 2019
                February 2020
                : 10
                : 2
                : 863-874
                Affiliations
                [1]Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
                Author notes
                [1 ]Corresponding author: Lisa N. Petrella, Department of Biological Sciences, Marquette University, 1428 West Clybourn St., Milwaukee, WI 53233. E-mail: lisa.petrella@ 123456marquette.edu
                Author information
                http://orcid.org/0000-0001-8664-7435
                Article
                GGG_400850
                10.1534/g3.119.400850
                7003081
                31843805
                0a72c6fd-af7a-4f15-8b36-250d604174b6
                Copyright © 2020 Cherian et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 October 2019
                : 08 December 2019
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 91, Pages: 12
                Categories
                Investigations

                Genetics
                dream complex,wnt/pcp signaling,c. elegans,germline genes
                Genetics
                dream complex, wnt/pcp signaling, c. elegans, germline genes

                Comments

                Comment on this article