32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assisted closed-loop optimization of SSVEP-BCI efficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Brain Computer Interfaces, a Review

          A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.

              During rest, multiple cortical brain regions are functionally linked forming resting-state networks. This high level of functional connectivity within resting-state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of our brain, enabling information to travel quickly from one brain region to another region. In this study, we examined both the functional and structural connections of the human brain in a group of 26 healthy subjects, combining 3 Tesla resting-state functional magnetic resonance imaging time-series with diffusion tensor imaging scans. Nine consistently found functionally linked resting-state networks were retrieved from the resting-state data. The diffusion tensor imaging scans were used to reconstruct the white matter pathways between the functionally linked brain areas of these resting-state networks. Our results show that well-known anatomical white matter tracts interconnect at least eight of the nine commonly found resting-state networks, including the default mode network, the core network, primary motor and visual network, and two lateralized parietal-frontal networks. Our results suggest that the functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
                Bookmark

                Author and article information

                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                22 December 2012
                25 February 2013
                2013
                : 7
                : 27
                Affiliations
                Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid Madrid, Spain
                Author notes

                Edited by: Steve M. Potter, Georgia Institute of Technology, USA

                Reviewed by: Attila Szücs, Balaton Limnological Research Institute HAS, Hungary; Pablo F. Diez, Universidad Nacional de San Juan, Argentina

                *Correspondence: Pablo Varona, Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 11, 28049 Madrid, Spain. e-mail: pablo.varona@ 123456uam.es
                Article
                10.3389/fncir.2013.00027
                3580891
                23443214
                0a8aface-a4de-4e6e-adac-a5ff8f3be74c
                Copyright © 2013 Fernandez-Vargas, Pfaff, Rodríguez and Varona.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 31 October 2012
                : 06 February 2013
                Page count
                Figures: 8, Tables: 1, Equations: 6, References: 61, Pages: 15, Words: 11892
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                brain-computer interface,brain-machine interface,activity-dependent stimulation,resting state eeg,resting state network,individual alpha frequency,bci illiteracy,bci performance predictor

                Comments

                Comment on this article