16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin-Loaded Nanoparticles with Low-Intensity Focused Ultrasound-Induced Phase Transformation as Tumor-Targeted and pH-Sensitive Theranostic Nanoplatform of Ovarian Cancer

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have developed a simple and versatile nanoplatform using pH-sensitive ferritin nanocages co-loaded with the anticancer drug curcumin (Cur) and liquid fluorocarbon perfluorohexane (PFH) inside the core and conjugated tumor-targeting molecule FA outside the shell referred to as FA-FCP. The synthesized FA-FCP has an average particle diameter of 47 nm, with stable and favorable physicochemical properties in different media, and high biocompatibility and biosafety in vivo and in vitro. Under the conditions of low-intensity focused ultrasound (LIFU) and at pH = 5.0, FA-FCP released a large amount of drugs (53.2%) in 24 h. After 4 min of LIFU (7 W) treatment, FA-FCP provided contrast-enhanced ultrasound imaging capabilities at pH = 5.0. Due to FA receptor-mediated endocytosis, FA-FCP could efficiently enter the cells and further relocate to lysosomes. Eighteen hours after injection of FA-FCP, the tumor was stimulated by LIFU, resulting in a contrast-enhanced ultrasound image. In vivo and in vitro experiments showed that the combined use of FA-FCP and LIFU had significant tumor treatment effects. Based on the results, it was concluded that FA-FCP combined with the external LIFU and the endogenic acidic environment can have powerful theranostic functions and provide a novel type of non-invasive and integrated tumor theranostic option.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation.

          The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of the surface modification, size, and shape on cellular uptake of nanoparticles.

            Nowadays successful application of nanoparticles for therapeutic objects needs the effective uptake of them by cells. Hence, studying of the interaction of nanoparticles with cell membrane for effective cellular uptaking seems to be vital and important. Trafficking of lipids, proteins, glucose, and other biomaterials into the cells is possible from two major exocytic and endocytic pathways. The penetration ability of nanoparticles into the cells must be considered in engineering of these particles. Enormous in vivo and in vitro experiments in the field of nanotechnology have confirmed the effect of physiochemistry properties in state of cell-nanoparticles interactions. Thus, the optimization of parameters directly related to physicochemical characteristics through the preparation process seems to be necessary for improving therapeutic effects of nanocarriers. Besides, biological medium and cell division also affect the amount of nanoparticle uptaking into the cells. This study reviews the influence of size, shape, the surface modification of nano particles, medium, and cell division effects on the cellular absorption of drug/gene nanocarriers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors.

              Ferritin (FRT) is a major iron storage protein found in humans and most living organisms. Each ferritin is composed of 24 subunits, which self-assemble to form a cage-like nanostructure. FRT nanocages can be genetically modified to present a peptide sequence on the surface. Recently, we demonstrated that Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD4C)-modified ferritin can efficiently home to tumors through RGD-integrin αvβ3 interaction. Though promising, studies on evaluating surface modified ferritin nanocages as drug delivery vehicles have seldom been reported. Herein, we showed that after being precomplexed with Cu(II), doxorubicin can be loaded onto RGD modified apoferritin nanocages with high efficiency (up to 73.49 wt %). When studied on U87MG subcutaneous tumor models, these doxorubicin-loaded ferritin nanocages showed a longer circulation half-life, higher tumor uptake, better tumor growth inhibition, and less cardiotoxicity than free doxorubicin. Such a technology might be extended to load a broad range of therapeutics and holds great potential in clinical translation.
                Bookmark

                Author and article information

                Contributors
                lgx0s6aoq1ep@sina.com
                docmj8203@hotmail.com
                jingyongok8@163.com
                haocg_m@163.com
                Journal
                Nanoscale Res Lett
                Nanoscale Res Lett
                Nanoscale Research Letters
                Springer US (New York )
                1931-7573
                1556-276X
                7 April 2020
                7 April 2020
                2020
                : 15
                : 73
                Affiliations
                [1 ]GRID grid.410646.1, ISNI 0000 0004 1808 0950, Department of Obstetrics and Gynecology, , Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, ; Chengdu, 610041 Sichuan China
                [2 ]GRID grid.410646.1, ISNI 0000 0004 1808 0950, Department of Imaging, , Eastern Hospital of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, ; No. 585 Honghe North Road, Longquanyi District, Chengdu, 610000 Sichuan China
                Article
                3302
                10.1186/s11671-020-03302-3
                7138896
                32266591
                0a8cca2f-b5cf-4b8c-80aa-1da8a151064e
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 January 2020
                : 19 March 2020
                Categories
                Nano Express
                Custom metadata
                © The Author(s) 2020

                Nanomaterials
                low-intensity focused ultrasound,ferritin,theranostic,curcumin,perfluorohexane
                Nanomaterials
                low-intensity focused ultrasound, ferritin, theranostic, curcumin, perfluorohexane

                Comments

                Comment on this article