23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Natural Iridoids and Anthocyanins on Selected Parameters of Liver and Cardiovascular System Functions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The old adage says, “you are what you eat.” And although it is a banality repeated by many with a grain of salt, it also has quite a bit of truth in it, as the products we eat have a considerable impact on our health. Unfortunately, humanity is eating worse from one year to another, both in terms of product quality and eating habits. At the same time, it is brought up frequently that plant products should form the basis of our diet. This issue was also reflected in the new version of the food pyramid. Iridoids and anthocyanins are groups of plant compounds with proven beneficial effects on health. Both groups affect the cardiovascular system and the liver functions. Although many mechanisms of action and the therapeutic effects of these compounds have already been learned, intensive animal and clinical research is still underway to explore their new curative mechanisms and effects or to broaden our knowledge of those previously described. In this article, we review the effects of natural iridoids and anthocyanins on selected parameters of liver and cardiovascular system functions.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: not found
          • Article: not found

          2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR).

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies

            Cardiovascular diseases (CVD) are an important cause of death worldwide. Anthocyanins are a subgroup of flavonoids found in berries, flowers, fruits and leaves. In epidemiological and clinical studies, these polyphenols have been associated with improved cardiovascular risk profiles as well as decreased comorbidities. Human intervention studies using berries, vegetables, parts of plants and cereals (either fresh or as juice) or purified anthocyanin-rich extracts have demonstrated significant improvements in low density lipoproteins oxidation, lipid peroxidation, total plasma antioxidant capacity, and dyslipidemia as well as reduced levels of CVD molecular biomarkers. This review discusses the use of anthocyanins in animal models and their applications in human medicine, as dietary supplements or as new potent drugs against cardiovascular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway.

              Enhanced oxidative stress due to high glucose contributes to pathological changes in diabetes-related liver complications. Reducing oxidative stress may alleviate these pathogenic processes. Anthocyanin, a natural antioxidant, has been reported to reduce intracellular reactive oxygen species (ROS) levels but the mechanism of this reduction is not fully understood. The glutathione (GSH) antioxidant system is critical for counteracting oxidative stress-induced intracellular injury. In this study, we evaluated the mechanism of the anthocyanin-mediated regulation of GSH synthesis and reduction in intracellular ROS levels. We observed that treatment of human HepG2 cells with the anthocyanin C3G significantly reduced ROS levels induced by high glucose. C3G incubation increased glutamate-cysteine ligase expression, which in turn mediated the reduction in ROS levels. However, the upregulation of glutamate-cysteine ligase catalytic subunit (Gclc) expression by C3G occurred independent of the Nrf1/2 transcription factors. Notably, the cAMP-response element binding protein (CREB) was identified as the target transcription factor involved in the C3G-mediated upregulation of Gclc expression. C3G increased phosphorylation of CREB through protein kinase A (PKA) activation, which induced a CREB-mediated upregulation of Gclc transcription. In vivo, treatment with C3G increased the GSH synthesis in the liver of diabetic db/db mice through PKA-CREB-dependent induction of Gclc expression. Finally, oxidative stress determined by lipid peroxidation, neutrophil infiltration, and hepatic steatosis was attenuated in C3G-treated db/db mice. Our results demonstrate that the anthocyanin C3G has an effect of activating GSH synthesis through a novel antioxidant defense mechanism against excessive ROS production, contributing to the prevention of hyperglycemia-induced hepatic oxidative damage. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2020
                31 March 2020
                : 2020
                : 2735790
                Affiliations
                1Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
                2Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
                Author notes

                Academic Editor: Daniela Pellegrino

                Author information
                https://orcid.org/0000-0002-2671-5747
                https://orcid.org/0000-0003-1082-0793
                https://orcid.org/0000-0003-0014-6344
                https://orcid.org/0000-0002-2172-0408
                https://orcid.org/0000-0003-1722-3190
                Article
                10.1155/2020/2735790
                7150688
                0a95e623-93a1-4919-9d21-191a9153dbaf
                Copyright © 2020 Maciej Danielewski et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 November 2019
                : 10 February 2020
                : 6 March 2020
                Funding
                Funded by: Wroclaw Medical University
                Award ID: SUB.A080.19.024
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article