4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Odor Cues Released by Ehrlich Tumor-Bearing Mice Are Aversive and Induce Psychological Stress

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: This study aimed to verify if odor cues released by Ehrlich tumor-bearing mice are aversive and stressful. Methods: Female mice were divided into a control group and an experimental group. One animal of each experimental pair of mice was inoculated with 5 × 10<sup>6</sup> Ehrlich tumor cells intraperitoneally; the other animal was kept undisturbed and was referred to as a CSP (companion of sick partner). One mouse of each control pair was treated intraperitoneally with 0.9% NaCl (1 mg/kg); the other animal (CHP, companion of healthy partner) was kept undisturbed. Results: It was shown that, in relation to CHP, CSP mice (1) spent less time within the companion zone in a T-maze place preference test, (2) had increased levels of social interaction, (3) had increased levels of plasmatic adrenaline and noradrenaline and (4) displayed no changes in serum corticosterone levels before and after an immobilization stress challenge. It was also shown that (5) cohabitation with 2 tumor-bearing mice was more effective in decreasing neutrophil oxidative burst than cohabitation with 1 sick partner and (6) the presence of a healthy conspecific within the cage of the tumor-injected/CSP pair abrogated the effects of cohabitation on neutrophil activity. These results show that odor cues released by Ehrlich tumor-injected mice are aversive and induce psychological stress. Conclusion: We postulate that the aversive response induced by the chemosignals released by Ehrlich tumor-injected animals activates the sympathetic nervous system and causes the neuroimmunal changes that occur in the mice cohabiting with the sick mice.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity.

          Sickness refers to a coordinated set of subjective, behavioural and physiological changes that develop in sick individuals during the course of an infection. These changes are due to the effects of interleukin-1 (IL-1) and other proinflammatory cytokines on brain cellular targets. Sickness behaviour is mediated by proinflammatory cytokines that are temporarily expressed in the brain during infection. These centrally produced cytokines are the same as those expressed by innate immune cells and they act on brain receptors that are identical to those characterized on immune cells. Primary afferent nerves represent the main communication pathway between peripheral and central cytokines. Proinflammatory cytokines modulate learning and memory processes. The expression and action of proinflammatory cytokines in the brain in response to peripheral cytokines are regulated by various molecular intermediates including anti-inflammatory cytokines such as interleukin-10 (IL-10) and the IL-1 receptor antagonist (IL-1ra), growth factors such as insulin-like growth factor-1 (IGF-1), hormones such as glucocorticoids and neuropeptides such as vasopressin and alpha-melanotropin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Assessment of Social Interaction Behaviors

            Social interactions are a fundamental and adaptive component of the biology of numerous species. Social recognition is critical for the structure and stability of the networks and relationships that define societies. For animals, such as mice, recognition of conspecifics may be important for maintaining social hierarchy and for mate choice 1. A variety of neuropsychiatric disorders are characterized by disruptions in social behavior and social recognition, including depression, autism spectrum disorders, bipolar disorders, obsessive-compulsive disorders, and schizophrenia. Studies of humans as well as animal models (e.g., Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Rattus norvegicus) have identified genes involved in the regulation of social behavior 2. To assess sociability in animal models, several behavioral tests have been developed (reviewed in 3). Integrative research using animal models and appropriate tests for social behavior may lead to the development of improved treatments for social psychopathologies. The three-chamber paradigm test known as Crawley's sociability and preference for social novelty protocol has been successfully employed to study social affiliation and social memory in several inbred and mutant mouse lines (e.g. 4-7). The main principle of this test is based on the free choice by a subject mouse to spend time in any of three box's compartments during two experimental sessions, including indirect contact with one or two mice with which it is unfamiliar. To quantitate social tendencies of the experimental mouse, the main tasks are to measure a) the time spent with a novel conspecific and b) preference for a novel vs. a familiar conspecific. Thus, the experimental design of this test allows evaluation of two critical but distinguishable aspects of social behavior, such as social affiliation/motivation, as well as social memory and novelty. "Sociability" in this case is defined as propensity to spend time with another mouse, as compared to time spent alone in an identical but empty chamber 7. "Preference for social novelty" is defined as propensity to spend time with a previously unencountered mouse rather than with a familiar mouse 7. This test provides robust results, which then must be carefully analyzed, interpreted and supported/confirmed by alternative sociability tests. In addition to specific applications, Crawley's sociability test can be included as an important component of general behavioral screen of mutant mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A potential role of macrophage activation in the treatment of cancer.

              One of the functions of macrophages is to provide a defense mechanism against tumor cells. In the last decades the mechanism of tumor cell killing by macrophages have been studied extensively. The tumor cytotoxic function of macrophages requires stimulation either with bacterial cell wall products such as lipopolysaccharide (LPS) or muramyldipeptide (MDP) or with cytokines such as interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Activated macrophages secrete several substances that are directly involved in tumor cell killing i.e. tumor necrosis factor (TNF) and nitric oxide (NO). On the other hand, substances are secreted that are able to stimulate tumor cell growth, depending on the stage and the nature of the tumor. Several clinical trials have been performed aiming at the activation of macrophages or dendritic cells, a subpopulation of the macrophages. In this review we will summarize and discuss experimental studies and clinical trials based on the activation of macrophages.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2015
                January 2015
                01 April 2014
                : 22
                : 3
                : 121-129
                Affiliations
                Laboratory of Applied Pharmacology and Toxicology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
                Author notes
                *Prof. Dr. João Palermo-Neto, Farmacologia Aplicada e Toxicologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-000 (Brazil), E-Mail jpalermo@usp.br
                Article
                358253 Neuroimmunomodulation 2015;22:121-129
                10.1159/000358253
                24714518
                0a9c369b-a076-478f-a1e6-02a002b64162
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 03 October 2013
                : 29 December 2013
                Page count
                Figures: 5, Tables: 3, Pages: 9
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Psychological stress,Sympathetic nervous system,Neuroimmunomodulation,Social interaction,Catecholamines,Ehrlich tumor,Neutrophils

                Comments

                Comment on this article