46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberous sclerosis complex (TSC) is an autosomal dominant, tumor predisposition disorder characterized by significant neurodevelopmental brain lesions, such as tubers and subependymal nodules. The neuropathology of TSC is often associated with seizures and intellectual disability. To learn about the developmental perturbations that lead to these brain lesions, we created a mouse model that selectively deletes the Tsc2 gene from radial glial progenitor cells in the developing cerebral cortex and hippocampus. These Tsc2 mutant mice were severely runted, developed post-natal megalencephaly and died between 3 and 4 weeks of age. Analysis of brain pathology demonstrated cortical and hippocampal lamination defects, hippocampal heterotopias, enlarged dysplastic neurons and glia, abnormal myelination and an astrocytosis. These histologic abnormalities were accompanied by activation of the mTORC1 pathway as assessed by increased phosphorylated S6 in brain lysates and tissue sections. Developmental analysis demonstrated that loss of Tsc2 increased the subventricular Tbr2-positive basal cell progenitor pool at the expense of early born Tbr1-positive post-mitotic neurons. These results establish the novel concept that loss of function of Tsc2 in radial glial progenitors is one initiating event in the development of TSC brain lesions as well as underscore the importance of Tsc2 in the regulation of neural progenitor pools. Given the similarities between the mouse and the human TSC lesions, this model will be useful in further understanding TSC brain pathophysiology, testing potential therapies and identifying other genetic pathways that are altered in TSC.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Neurons derived from radial glial cells establish radial units in neocortex.

          The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growing roles for the mTOR pathway.

            The mammalian TOR (mTOR) pathway is a key regulator of cell growth and proliferation and increasing evidence suggests that its deregulation is associated with human diseases, including cancer and diabetes. The mTOR pathway integrates signals from nutrients, energy status and growth factors to regulate many processes, including autophagy, ribosome biogenesis and metabolism. Recent work identifying two structurally and functionally distinct mTOR-containing multiprotein complexes and TSC1/2, rheb, and AMPK as upstream regulators of mTOR is beginning to reveal how mTOR can sense diverse signals and produce a myriad of responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.

              Angiomyolipomas in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis are associated with mutations in tuberous sclerosis genes resulting in constitutive activation of the mammalian target of rapamycin (mTOR). The drug sirolimus suppresses mTOR signaling. We conducted a 24-month, nonrandomized, open-label trial to determine whether sirolimus reduces the angiomyolipoma volume in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis. Sirolimus was administered for the first 12 months only. Serial magnetic resonance imaging of angiomyolipomas and brain lesions, computed tomography of lung cysts, and pulmonary-function tests were performed. Of the 25 patients enrolled, 20 completed the 12-month evaluation, and 18 completed the 24-month evaluation. The mean (+/-SD) angiomyolipoma volume at 12 months was 53.2+/-26.6% of the baseline value (P<0.001) and at 24 months was 85.9+/-28.5% of the baseline value (P=0.005). At 24 months, five patients had a persistent reduction in the angiomyolipoma volume of 30% or more. During the period of sirolimus therapy, among patients with lymphangioleiomyomatosis, the mean forced expiratory volume in 1 second (FEV1) increased by 118+/-330 ml (P=0.06), the forced vital capacity (FVC) increased by 390+/-570 ml (P<0.001), and the residual volume decreased by 439+/-493 ml (P=0.02), as compared with baseline values. One year after sirolimus was discontinued, the FEV1 was 62+/-411 ml above the baseline value, the FVC was 346+/-712 ml above the baseline value, and the residual volume was 333+/-570 ml below the baseline value; cerebral lesions were unchanged. Five patients had six serious adverse events while receiving sirolimus, including diarrhea, pyelonephritis, stomatitis, and respiratory infections. Angiomyolipomas regressed somewhat during sirolimus therapy but tended to increase in volume after the therapy was stopped. Some patients with lymphangioleiomyomatosis had improvement in spirometric measurements and gas trapping that persisted after treatment. Suppression of mTOR signaling might constitute an ameliorative treatment in patients with the tuberous sclerosis complex or sporadic lymphangioleiomyomatosis. (ClinicalTrials.gov number, NCT00457808.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Hum Mol Genet
                hmg
                hmg
                Human Molecular Genetics
                Oxford University Press
                0964-6906
                1460-2083
                1 April 2009
                15 January 2009
                15 January 2009
                : 18
                : 7
                : 1252-1265
                Affiliations
                Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center , 6431 Fannin Street, MSB 3.144, Houston, TX 77030, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 713 500 5760; Fax: +1 713 500 5689; Email: michael.j.gambello@ 123456uth.tmc.edu
                Article
                ddp025
                10.1093/hmg/ddp025
                2655769
                19150975
                0aa65cbb-b1c8-4245-8ff9-8436cd52c9f1
                © 2009 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 December 2008
                : 15 December 2008
                : 12 January 2009
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article