6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coffee consumption and risk of myocardial infarction: a dose-response meta-analysis of observational studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previous epidemiological studies have provided inconsistent conclusions on the effect of coffee consumption in the development of myocardial infarction (MI). The aim of the study was to evaluate the influence of coffee consumption and its potential dose-response patterns on the risk of developing MI.

          Materials and Methods

          Three databases were searched for evidence of eligible studies. A random-effects model was used to pool the fully adjusted odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). Dose-response analysis was performed to show the effect of each cup increased in daily coffee drinking on the risk of MI.

          Results

          Seventeen studies involving 233,617 participants were included in our study. The association between coffee consumption and risk of MI did not show statistical significance when pooling the outcome data for the coffee consumption categories of 1~2 vs. < 1 cup per day (OR = 1.06, 95% CI: 0.94–1.19) and 2~3 vs. < 1 cup per day (OR = 1.07, 95% CI: 0.94–1.23). Compared with < 1 cup, daily drinking of 3~4 cups and > 4 cups of coffee were significantly associated with the risk of MI, and the pooled ORs (95% CIs) were 1.40 (1.11–1.77) and 1.48 (1.22–1.79), respectively. The dose–response analysis showed a “J–shaped” curve relationship of the risk of MI with coffee consumption.

          Conclusions

          Daily drinking of more than three cups of coffee was associated with a significantly increased risk of MI. This positive association was only found in men but not in women. The impact of gender on this association should be further evaluated.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-analysis

          OBJECTIVE Previous meta-analyses identified an inverse association of coffee consumption with the risk of type 2 diabetes. However, an updated meta-analysis is needed because new studies comparing the trends of association for caffeinated and decaffeinated coffee have since been published. RESEARCH DESIGN AND METHODS PubMed and Embase were searched for cohort or nested case-control studies that assessed the relationship of coffee consumption and risk of type 2 diabetes from 1966 to February 2013. A restricted cubic spline random-effects model was used. RESULTS Twenty-eight prospective studies were included in the analysis, with 1,109,272 study participants and 45,335 cases of type 2 diabetes. The follow-up duration ranged from 10 months to 20 years. Compared with no or rare coffee consumption, the relative risk (RR; 95% CI) for diabetes was 0.92 (0.90–0.94), 0.85 (0.82–0.88), 0.79 (0.75–0.83), 0.75 (0.71–0.80), 0.71 (0.65–0.76), and 0.67 (0.61–0.74) for 1–6 cups/day, respectively. The RR of diabetes for a 1 cup/day increase was 0.91 (0.89–0.94) for caffeinated coffee consumption and 0.94 (0.91–0.98) for decaffeinated coffee consumption (P for difference = 0.17). CONCLUSIONS Coffee consumption was inversely associated with the risk of type 2 diabetes in a dose-response manner. Both caffeinated and decaffeinated coffee was associated with reduced diabetes risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coffee, CYP1A2 genotype, and risk of myocardial infarction.

            The association between coffee intake and risk of myocardial infarction (MI) remains controversial. Coffee is a major source of caffeine, which is metabolized by the polymorphic cytochrome P450 1A2 (CYP1A2) enzyme. Individuals who are homozygous for the CYP1A2*1A allele are "rapid" caffeine metabolizers, whereas carriers of the variant CYP1A2*1F are "slow" caffeine metabolizers. To determine whether CYP1A2 genotype modifies the association between coffee consumption and risk of acute nonfatal MI. Cases (n = 2014) with a first acute nonfatal MI and population-based controls (n = 2014) living in Costa Rica between 1994 and 2004, matched for age, sex, and area of residence, were genotyped by restriction fragment-length polymorphism polymerase chain reaction. A food frequency questionnaire was used to assess the intake of caffeinated coffee. Relative risk of nonfatal MI associated with coffee intake, calculated using unconditional logistic regression. Fifty-five percent of cases (n = 1114) and 54% of controls (n = 1082) were carriers of the slow *1F allele. For carriers of the slow *1F allele, the multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of nonfatal MI associated with consuming less than 1, 1, 2 to 3, and 4 or more cups of coffee per day were 1.00 (reference), 0.99 (0.69-1.44), 1.36 (1.01-1.83), and 1.64 (1.14-2.34), respectively. Corresponding ORs (95% CIs) for individuals with the rapid *1A/*1A genotype were 1.00, 0.75 (0.51-1.12), 0.78 (0.56-1.09), and 0.99 (0.66-1.48) (P = .04 for gene x coffee interaction). For individuals younger than the median age of 59 years, the ORs (95% CIs) associated with consuming less than 1, 1, 2 to 3, or 4 or more cups of coffee per day were 1.00, 1.24 (0.71-2.18), 1.67 (1.08-2.60), and 2.33 (1.39-3.89), respectively, among carriers of the *1F allele. The corresponding ORs (95% CIs) for those with the *1A/*1A genotype were 1.00, 0.48 (0.26-0.87), 0.57 (0.35-0.95), and 0.83 (0.46-1.51). Intake of coffee was associated with an increased risk of nonfatal MI only among individuals with slow caffeine metabolism, suggesting that caffeine plays a role in this association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine.

              The cytochrome P450 enzyme CYP1A2 metabolises several drugs and carcinogens. We wanted to determine how much of the variability of CYP1A2 activity is explained by a newly discovered gene polymorphism in intron 1. A single nucleotide polymorphism in intron 1 of the CYP1A2 gene at position 734 downstream of the first transcribed nucleotide was identified by DNA sequence analysis. The functional significance of this C/A polymorphism was assessed in 185 healthy Caucasian non-smokers and in 51 smokers by genotyping and phenotyping using caffeine (100 mg oral dose). Out of the total sample, 46% were homozygous for the variant A, 44% were heterozygous, and 10% were homozygous for the variant C. The ratio of 1,7-dimethylxanthine (17X) plus 1,7-dimethyluric acid divided by caffeine in 0-5 h urine samples from 185 non-smokers did not differ significantly between the three CYP1A2 genotypes. In the 51 smokers, analysis of variance revealed significant differences in the 5 h plasma 17X/caffeine ratios between the genotypes (P=0.008, F-test). The mean ratio was 1.37 in carriers of the A/A genotype, 0.88 in heterozygotes and 0.82 in carriers of C/C. The mean difference between the A/A and C/A groups was 0.48 (95% confidence interval 0. 15-0.81; P=0.01). The A/A genotype, which may represent a CYP1A2 high inducibility genotype, may either be a direct cause of increased CYP1A2 activity, or be genetically linked to polymorphisms conferring high inducibility. Further studies are needed to define the role of this polymorphism on the pharmacokinetics of drugs metabolised by CYP1A2 and in the activation of carcinogens.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 April 2018
                4 January 2018
                : 9
                : 30
                : 21530-21540
                Affiliations
                1 Department of Cardiology, Xiangya Hospital of Centre South University, Changsha, Hunan Province, PR China
                2 Institute of Genetic Pharmacology, Xiangya School of Medicine, Centre South University, Changsha, Hunan Province, PR China
                Author notes
                Correspondence to: Long Mo, molongxyhos@ 123456163.com
                Article
                23947
                10.18632/oncotarget.23947
                5940396
                0aaacb57-4333-4564-b6d6-1bf8b03b5fbe
                Copyright: © 2018 Mo et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Categories
                Meta-Analysis

                Oncology & Radiotherapy
                coffee consumption,myocardial infarction,risk factor,dose-response,meta-analysis

                Comments

                Comment on this article