10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Land-locked mammalian Golgi reveals cargo transport between stable cisternae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Golgi is composed of a stack of cis, medial, trans cisternae that are biochemically distinct. The stable compartments model postulates that permanent cisternae communicate through bi-directional vesicles, while the cisternal maturation model postulates that transient cisternae biochemically mature to ensure anterograde transport. Testing either model has been constrained by the diffraction limit of light microscopy, as the cisternae are only 10–20 nm thick and closely stacked in mammalian cells. We previously described the unstacking of Golgi by the ectopic adhesion of Golgi cisternae to mitochondria. Here, we show that cargo processing and transport continue—even when individual Golgi cisternae are separated and “land-locked” between mitochondria. With the increased spatial separation of cisternae, we show using three-dimensional live imaging that cis-Golgi and trans-Golgi remain stable in their composition and size. Hence, we provide new evidence in support of the stable compartments model in mammalian cells.

          Abstract

          The different composition of Golgi cisternae gave rise to two different models for intra-Golgi traffic: one where stable cisternae communicate via vesicles and another one where cisternae biochemically mature to ensure anterograde transport. Here, the authors provide evidence in support of the stable compartments model.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites.

          Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural approaches. After microtubule depolymerization, Golgi membrane components were found to redistribute to a distinct number of peripheral sites that were not randomly distributed, but corresponded to sites of protein exit from the ER. Whereas Golgi enzymes redistributed gradually over several hours to these peripheral sites, ERGIC-53 (a protein which constitutively cycles between the ER and Golgi) redistributed rapidly (within 15 minutes) to these sites after first moving through the ER. Prior to this redistribution, Golgi enzyme processing of proteins exported from the ER was inhibited and only returned to normal levels after Golgi enzymes redistributed to peripheral ER exit sites where Golgi stacks were regenerated. Experiments examining the effects of microtubule disruption on the membrane pathways connecting the ER and Golgi suggested their potential role in the dispersal process. Whereas clustering of peripheral pre-Golgi elements into the centrosomal region failed to occur after microtubule disruption, Golgi-to-ER membrane recycling was only slightly inhibited. Moreover, conditions that impeded Golgi-to-ER recycling completely blocked Golgi fragmentation. Based on these findings we propose that a slow but constitutive flux of Golgi resident proteins through the same ER/Golgi cycling pathways as ERGIC-53 underlies Golgi Dispersal upon microtubule depolymerization. Both ERGIC-53 and Golgi proteins would accumulate at peripheral ER exit sites due to failure of membranes at these sites to cluster into the centrosomal region. Regeneration of Golgi stacks at these peripheral sites would re-establish secretory flow from the ER into the Golgi complex and result in Golgi dispersal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Golgi maturation visualized in living yeast.

            The Golgi apparatus is composed of biochemically distinct early (cis, medial) and late (trans, TGN) cisternae. There is debate about the nature of these cisternae. The stable compartments model predicts that each cisterna is a long-lived structure that retains a characteristic set of Golgi-resident proteins. In this view, secretory cargo proteins are transported by vesicles from one cisterna to the next. The cisternal maturation model predicts that each cisterna is a transient structure that matures from early to late by acquiring and then losing specific Golgi-resident proteins. In this view, secretory cargo proteins traverse the Golgi by remaining within the maturing cisternae. Various observations have been interpreted as supporting one or the other mechanism. Here we provide a direct test of the two models using three-dimensional time-lapse fluorescence microscopy of the yeast Saccharomyces cerevisiae. This approach reveals that individual cisternae mature, and do so at a consistent rate. In parallel, we used pulse-chase analysis to measure the transport of two secretory cargo proteins. The rate of cisternal maturation matches the rate of protein transport through the secretory pathway, suggesting that cisternal maturation can account for the kinetics of secretory traffic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GRASP65, a protein involved in the stacking of Golgi cisternae.

              NEM prevents mitotic reassembly of Golgi cisternae into stacked structures. The major target of NEM is a 65 kDa protein conserved from yeast to mammals. Antibodies to this protein and a recombinant form of it block cisternal stacking in a cell-free system, justifying its designation as a Golgi ReAssembly Stacking Protein (GRASP65). One of the two minor targets of NEM is GM130, previously implicated in the docking of transport vesicles and mitotic fragmentation of the Golgi stack. GRASP65 is complexed with GM130 and is tightly bound to Golgi membranes, even under mitotic conditions when both are heavily phosphorylated. These results link vesicle docking, stacking of Golgi cisternae, and the disruption of both of these interactions during mitosis.
                Bookmark

                Author and article information

                Contributors
                james.rothman@yale.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                5 September 2017
                5 September 2017
                2017
                : 8
                : 432
                Affiliations
                ISNI 0000000419368710, GRID grid.47100.32, Department of Cell Biology, , Yale School of Medicine, ; New Haven, CT 06511 USA
                Article
                570
                10.1038/s41467-017-00570-z
                5585379
                28874656
                0abe5401-567e-4d37-b182-c41b7a145b77
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 August 2016
                : 10 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article