23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomewide comparison and novel ncRNAs of Aquificales

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Aquificales are a diverse group of thermophilic bacteria that thrive in terrestrial and marine hydrothermal environments. They can be divided into the families Aquificaceae, Desulfurobacteriaceae and Hydrogenothermaceae. Although eleven fully sequenced and assembled genomes are available, only little is known about this taxonomic order in terms of RNA metabolism.

          Results

          In this work, we compare the available genomes, extend their protein annotation, identify regulatory sequences, annotate non-coding RNAs (ncRNAs) of known function, predict novel ncRNA candidates, show idiosyncrasies of the genetic decoding machinery, present two different types of transfer-messenger RNAs and variations of the CRISPR systems. Furthermore, we performed a phylogenetic analysis of the Aquificales based on entire genome sequences, and extended this by a classification among all bacteria using 16S rRNA sequences and a set of orthologous proteins.

          Combining several in silico features (e.g. conserved and stable secondary structures, GC-content, comparison based on multiple genome alignments) with an in vivo dRNA-seq transcriptome analysis of Aquifex aeolicus, we predict roughly 100 novel ncRNA candidates in this bacterium.

          Conclusions

          We have here re-analyzed the Aquificales, a group of bacteria thriving in extreme environments, sharing the feature of a small, compact genome with a reduced number of protein and ncRNA genes. We present several classical ncRNAs and riboswitch candidates. By combining in silico analysis with dRNA-seq data of A. aeolicus we predict nearly 100 novel ncRNA candidates.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Vienna RNA secondary structure server.

          The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets

            Summary: Experimental techniques that survey an entire genome demand flexible, highly interactive visualization tools that can display new data alongside foundation datasets, such as reference gene annotations. The Integrated Genome Browser (IGB) aims to meet this need. IGB is an open source, desktop graphical display tool implemented in Java that supports real-time zooming and panning through a genome; layout of genomic features and datasets in moveable, adjustable tiers; incremental or genome-scale data loading from remote web servers or local files; and dynamic manipulation of quantitative data via genome graphs. Availability: The application and source code are available from http://igb.bioviz.org and http://genoviz.sourceforge.net. Contact: aloraine@uncc.edu
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast and reliable prediction of noncoding RNAs.

              We report an efficient method for detecting functional RNAs. The approach, which combines comparative sequence analysis and structure prediction, already has yielded excellent results for a small number of aligned sequences and is suitable for large-scale genomic screens. It consists of two basic components: (i) a measure for RNA secondary structure conservation based on computing a consensus secondary structure, and (ii) a measure for thermodynamic stability, which, in the spirit of a z score, is normalized with respect to both sequence length and base composition but can be calculated without sampling from shuffled sequences. Functional RNA secondary structures can be identified in multiple sequence alignments with high sensitivity and high specificity. We demonstrate that this approach is not only much more accurate than previous methods but also significantly faster. The method is implemented in the program rnaz, which can be downloaded from www.tbi.univie.ac.at/~wash/RNAz. We screened all alignments of length n > or = 50 in the Comparative Regulatory Genomics database, which compiles conserved noncoding elements in upstream regions of orthologous genes from human, mouse, rat, Fugu, and zebrafish. We recovered all of the known noncoding RNAs and cis-acting elements with high significance and found compelling evidence for many other conserved RNA secondary structures not described so far to our knowledge.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2014
                25 June 2014
                : 15
                : 522
                Affiliations
                [1 ]Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
                [2 ]Faculty of Mathematics and Computer Science, Friedrich-Schiller-University Jena, Leutragraben 1, 07743 Jena, Germany
                [3 ]Faculty of Mathematics and Informatics, University of Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
                [4 ]IRI for the Life Sciences, Molecular Infection Biology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
                Article
                1471-2164-15-522
                10.1186/1471-2164-15-522
                4227106
                24965762
                0ac0fe61-ff3d-4ccf-bae3-da8ffc0e009e
                Copyright © 2014 Lechner et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 November 2013
                : 8 May 2014
                Categories
                Research Article

                Genetics
                aquificales,thermophiles,ncrna,aquificaceae,desulfurobacteriaceae,hydrogenothermaceae
                Genetics
                aquificales, thermophiles, ncrna, aquificaceae, desulfurobacteriaceae, hydrogenothermaceae

                Comments

                Comment on this article