12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.

          Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests.

            Understanding the context dependence of ecosystem responses to global changes requires the development of new conceptual frameworks. Here we propose a framework for considering how tree species and their mycorrhizal associates differentially couple carbon (C) and nutrient cycles in temperate forests. Given that tree species predominantly associate with a single type of mycorrhizal fungi (arbuscular mycorrhizal (AM) fungi or ectomycorrhizal (ECM) fungi), and that the two types of fungi differ in their modes of nutrient acquisition, we hypothesize that the abundance of AM and ECM trees in a plot, stand, or region may provide an integrated index of biogeochemical transformations relevant to C cycling and nutrient retention. First, we describe how forest plots dominated by AM tree species have nutrient economies that differ in their C-nutrient couplings from those in plots dominated by ECM trees. Secondly, we demonstrate how the relative abundance of AM and ECM trees can be used to estimate nutrient dynamics across the landscape. Finally, we describe how our framework can be used to generate testable hypotheses about forest responses to global change factors, and how these dynamics can be used to develop better representations of plant-soil feedbacks and nutrient constraints on productivity in ecosystem and earth system models. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrogen limitation constrains sustainability of ecosystem response to CO2.

              Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Ecol Lett
                Wiley
                1461023X
                December 2017
                December 2017
                October 22 2017
                : 20
                : 12
                : 1546-1555
                Affiliations
                [1 ]Swedish University of Agricultural Sciences; Department of Soil and Environment; SE-750 07 Uppsala Sweden
                [2 ]Swedish University of Agricultural Sciences; Department of Forest Mycology and Plant Pathology; Uppsala BioCenter; SE-750 07 Uppsala Sweden
                Article
                10.1111/ele.12862
                29057614
                0acae054-0662-4c96-9349-859a77650a76
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article