47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The complex microbiome of the ceca of chickens plays an important role in nutrient utilization, growth and well-being of these animals. Since we have a very limited understanding of the capabilities of most species present in the cecum, we investigated the role of the microbiome by comparative analyses of both the microbial community structure and functional gene content using random sample pyrosequencing. The overall goal of this study was to characterize the chicken cecal microbiome using a pathogen-free chicken and one that had been challenged with Campylobacter jejuni.

          Methodology/Principal Findings

          Comparative metagenomic pyrosequencing was used to generate 55,364,266 bases of random sampled pyrosequence data from two chicken cecal samples. SSU rDNA gene tags and environmental gene tags (EGTs) were identified using SEED subsystems-based annotations. The distribution of phylotypes and EGTs detected within each cecal sample were primarily from the Firmicutes, Bacteroidetes and Proteobacteria, consistent with previous SSU rDNA libraries of the chicken cecum. Carbohydrate metabolism and virulence genes are major components of the EGT content of both of these microbiomes. A comparison of the twelve major pathways in the SEED Virulence Subsystem (metavirulome) represented in the chicken cecum, mouse cecum and human fecal microbiomes showed that the metavirulomes differed between these microbiomes and the metavirulomes clustered by host environment. The chicken cecum microbiomes had the broadest range of EGTs within the SEED Conjugative Transposon Subsystem, however the mouse cecum microbiomes showed a greater abundance of EGTs in this subsystem. Gene assemblies (32 contigs) from one microbiome sample were predominately from the Bacteroidetes, and seven of these showed sequence similarity to transposases, whereas the remaining sequences were most similar to those from catabolic gene families.

          Conclusion/Significance

          This analysis has demonstrated that mobile DNA elements are a major functional component of cecal microbiomes, thus contributing to horizontal gene transfer and functional microbiome evolution. Moreover, the metavirulomes of these microbiomes appear to associate by host environment. These data have implications for defining core and variable microbiome content in a host species. Furthermore, this suggests that the evolution of host specific metavirulomes is a contributing factor in disease resistance to zoonotic pathogens.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Metagenomics: application of genomics to uncultured microorganisms.

          Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative metagenomics of microbial communities.

            The species complexity of microbial communities and challenges in culturing representative isolates make it difficult to obtain assembled genomes. Here we characterize and compare the metabolic capabilities of terrestrial and marine microbial communities using largely unassembled sequence data obtained by shotgun sequencing DNA isolated from the various environments. Quantitative gene content analysis reveals habitat-specific fingerprints that reflect known characteristics of the sampled environments. The identification of environment-specific genes through a gene-centric comparative analysis presents new opportunities for interpreting and diagnosing environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyrosequencing enumerates and contrasts soil microbial diversity.

              Estimates of the number of species of bacteria per gram of soil vary between 2000 and 8.3 million (Gans et al., 2005; Schloss and Handelsman, 2006). The highest estimate suggests that the number may be so large as to be impractical to test by amplification and sequencing of the highly conserved 16S rRNA gene from soil DNA (Gans et al., 2005). Here we present the use of high throughput DNA pyrosequencing and statistical inference to assess bacterial diversity in four soils across a large transect of the western hemisphere. The number of bacterial 16S rRNA sequences obtained from each site varied from 26,140 to 53,533. The most abundant bacterial groups in all four soils were the Bacteroidetes, Betaproteobacteria and Alphaproteobacteria. Using three estimators of diversity, the maximum number of unique sequences (operational taxonomic units roughly corresponding to the species level) never exceeded 52,000 in these soils at the lowest level of dissimilarity. Furthermore, the bacterial diversity of the forest soil was phylum rich compared to the agricultural soils, which are species rich but phylum poor. The forest site also showed far less diversity of the Archaea with only 0.009% of all sequences from that site being from this group as opposed to 4%-12% of the sequences from the three agricultural sites. This work is the most comprehensive examination to date of bacterial diversity in soil and suggests that agricultural management of soil may significantly influence the diversity of bacteria and archaea.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                13 August 2008
                : 3
                : 8
                : e2945
                Affiliations
                [1 ]Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
                [2 ]Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona, United States of America
                [3 ]School of Molecular Biosciences, Center for Biotechnology, Washington State University, Seattle, Washington, United States of America
                [4 ]Department of Biology, San Diego State University, San Diego, California, United States of America
                [5 ]Department of Computational Science, San Diego State University, San Diego, California, United States of America
                [6 ]School of Biological Sciences, Flinders University, Adelaide, Australia
                [7 ]Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
                [8 ]Department of Computer Sciences, San Diego State University, San Diego, California, United States of America
                [9 ]The J. Craig Venter Institute, Rockville, Maryland, United States of America
                [10 ]The Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
                Centre for DNA Fingerprinting and Diagnostics, India
                Author notes

                Conceived and designed the experiments: LAJ BAW. Performed the experiments: MKW BFL JRT. Analyzed the data: AQ JMB MKW MEK FA ED RAE KEN. Contributed reagents/materials/analysis tools: LAJ. Wrote the paper: AQ BAW.

                Article
                08-PONE-RA-03887R2
                10.1371/journal.pone.0002945
                2492807
                18698407
                0ae068ee-2212-45ac-a8db-49e2ab075bc7
                Qu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 March 2008
                : 14 July 2008
                Page count
                Pages: 19
                Categories
                Research Article
                Ecology/Community Ecology and Biodiversity
                Ecology/Environmental Microbiology
                Genetics and Genomics/Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Environmental Microbiology
                Microbiology/Microbial Evolution and Genomics
                Infectious Diseases/Gastrointestinal Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article