17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NZ17074 (N1), an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is cytotoxic. To reduce its cytotoxicity, seven N1 analogues with different structures were designed by changing their disulfide bonds, hydrophobicity, or charge. The “rocket” analogue-N2 and the “kite” analogue-N6 have potent activity and showed lower cytotoxicity in RAW264.7 cells than N1. The NMR spectra revealed that N1, N2, and N6 adopt β-sheet structures stabilized by one or two disulfide bonds. N2 and N6 permeabilized the outer/inner membranes of E. coli, but did not permeabilize the inner membranes of S. enteritidis. N2 and N6 induced E. coli and S. enteritidis cell cycle arrest in the I-phase and R-phase, respectively. In E. coli and in S. enteritidis, 18.7–43.8% of DNA/RNA/cell wall synthesis and 5.7–61.8% of DNA/RNA/protein synthesis were inhibited by the two peptides, respectively. Collapsed and filamentous E. coli cells and intact morphologies of S. enteritidis cells were observed after treatment with the two peptides. Body weight doses from 2.5–7.5 mg/kg of N2 and N6 enhanced the survival rate of peritonitis- and endotoxemia-induced mice; reduced the serum IL-6, IL-1β and TNF-α levels; and protected mice from lipopolysaccharide-induced lung injury. These data indicate that N2 and N6, through multiple selective actions, may be promising dual-function candidates as novel antimicrobial and anti-endotoxin peptides.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Version 1.2 of the Crystallography and NMR system.

          Version 1.2 of the software system, termed Crystallography and NMR system (CNS), for crystallographic and NMR structure determination has been released. Since its first release, the goals of CNS have been (i) to create a flexible computational framework for exploration of new approaches to structure determination, (ii) to provide tools for structure solution of difficult or large structures, (iii) to develop models for analyzing structural and dynamical properties of macromolecules and (iv) to integrate all sources of information into all stages of the structure determination process. Version 1.2 includes an improved model for the treatment of disordered solvent for crystallographic refinement that employs a combined grid search and least-squares optimization of the bulk solvent model parameters. The method is more robust than previous implementations, especially at lower resolution, generally resulting in lower R values. Other advances include the ability to apply thermal factor sharpening to electron density maps. Consistent with the modular design of CNS, these additions and changes were implemented in the high-level computing language of CNS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ARIA2: automated NOE assignment and data integration in NMR structure calculation.

            Modern structural genomics projects demand for integrated methods for the interpretation and storage of nuclear magnetic resonance (NMR) data. Here we present version 2.1 of our program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of nuclear Overhauser enhancement (NOE) data and NMR structure calculation. We report on recent developments, most notably a graphical user interface, and the incorporation of the object-oriented data model of the Collaborative Computing Project for NMR (CCPN). The CCPN data model defines a storage model for NMR data, which greatly facilitates the transfer of data between different NMR software packages. A distribution with the source code of ARIA 2.1 is freely available at http://www.pasteur.fr/recherche/unites/Binfs/aria2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial cell wall synthesis: new insights from localization studies.

              In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.
                Bookmark

                Author and article information

                Contributors
                wangxiumin@caas.cn
                wangjianhua@caas.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 June 2017
                13 June 2017
                2017
                : 7
                : 3392
                Affiliations
                [1 ]ISNI 0000 0004 0369 6250, GRID grid.418524.e, Key Laboratory of Feed Biotechnology, , Ministry of Agriculture, ; Beijing, 100081 China
                [2 ]ISNI 0000 0001 0526 1937, GRID grid.410727.7, Gene Engineering Laboratory, Feed Research Institute, , Chinese Academy of Agricultural Sciences, ; Beijing, 100081 China
                [3 ]ISNI 0000000119573309, GRID grid.9227.e, Institute of Biophysics, , Chinese Academy of Sciences, ; Beijing, China
                Author information
                http://orcid.org/0000-0001-8987-6145
                Article
                3664
                10.1038/s41598-017-03664-2
                5469750
                28611436
                0af2774f-31a6-4217-86ed-b1aac898ec25
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 February 2017
                : 25 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article