5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Skewing of the population balance of lymphoid and myeloid cells by secreted and intracellular osteopontin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The balance between myeloid and lymphoid populations must be well controlled. Here, we report that a protein, osteopontin (OPN), skews the balance between myeloid and lymphoid populations during pathogenic conditions, such as infection and autoimmunity. Importantly, two OPN isoforms exert distinct effects in shifting the balance through cell type-specific regulation of apoptosis. Intracellular OPN (iOPN) reduces population sizes of myeloid progenitors and myeloid cells, and secreted OPN (sOPN) increases population sizes of lymphoid cells. The total impact of OPN in skewing leukocyte population balance was observed as host sensitivity to early systemic Candida infection and T cell-mediated colitis. This study suggests novel detrimental roles of two OPN isoforms causing the imbalance of leukocyte populations.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components.

          Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin-dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell-cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin-bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell-cell adhesion, E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control cell proliferation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity.

            Cell-mediated (type-1) immunity is necessary for immune protection against most intracellular pathogens and, when excessive, can mediate organ-specific autoimmune destruction. Mice deficient in Eta-1 (also called osteopontin) gene expression have severely impaired type-1 immunity to viral infection [herpes simplex virus-type 1 (KOS strain)] and bacterial infection (Listeria monocytogenes) and do not develop sarcoid-type granulomas. Interleukin-12 (IL-12) and interferon-gamma production is diminished, and IL-10 production is increased. A phosphorylation-dependent interaction between the amino-terminal portion of Eta-1 and its integrin receptor stimulated IL-12 expression, whereas a phosphorylation-independent interaction with CD44 inhibited IL-10 expression. These findings identify Eta-1 as a key cytokine that sets the stage for efficient type-1 immune responses through differential regulation of macrophage IL-12 and IL-10 cytokine expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells.

              Although recent data suggests that osteoblasts play a key role within the hematopoietic stem cell (HSC) niche, the mechanisms underpinning this remain to be fully defined. The studies described herein examine the role in hematopoiesis of Osteopontin (Opn), a multidomain, phosphorylated glycoprotein, synthesized by osteoblasts, with well-described roles in cell adhesion, inflammatory responses, angiogenesis, and tumor metastasis. We demonstrate a previously unrecognized critical role for Opn in regulation of the physical location and proliferation of HSCs. Within marrow, Opn expression is restricted to the endosteal bone surface and contributes to HSC transmarrow migration toward the endosteal region, as demonstrated by the markedly aberrant distribution of HSCs in Opn-/- mice after transplantation. Primitive hematopoietic cells demonstrate specific adhesion to Opn in vitro via beta1 integrin. Furthermore, exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn-/- mice. These data therefore provide strong evidence that Opn is an important component of the HSC niche which participates in HSC location and as a physiologic-negative regulator of HSC proliferation.
                Bookmark

                Author and article information

                Journal
                100941354
                21750
                Nat Immunol
                Nat. Immunol.
                Nature immunology
                1529-2908
                1529-2916
                16 June 2017
                03 July 2017
                September 2017
                03 January 2018
                : 18
                : 9
                : 973-984
                Affiliations
                [1 ]Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
                [2 ]Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
                [3 ]Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
                [4 ]Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
                Author notes
                [** ]Corresponding author. Department of Immunology, DUMC3010, Duke University Medical Center, Durham, NC 27710. Phone: 919-613-6977, mari.shinohara@ 123456duke.edu
                [*]

                These authors contributed equally to this work.

                Article
                NIHMS884854
                10.1038/ni.3791
                5568448
                28671690
                0b1ca5da-2804-45a3-a0db-a3426ae4d56a

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article