109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Frequency tuning of a triply-resonant whispering-gallery mode resonator to MHz wide transitions for proposed quantum repeater schemes

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum repeaters rely on an interfacing of flying qubits with quantum memories. The most common implementations include a narrowband single photon matched in bandwidth and central frequency to an atomic system. Previously, we demonstrated the compatibility of our versatile source of heralded single photons, which is based on parametric down-conversion in a triply-resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2, 773 (2015)]. In this paper, we analyze our source in terms of phase matching, available wavelength-tuning mechanisms, and applications to narrow-band atomic systems. We resonantly address the D1 transitions of cesium and rubidium with this optical parametric oscillator pumped above its oscillation threshold. Below threshold, the efficient coupling of single photons to atomic transitions heralded by single telecom-band photons is demonstrated. Finally, we present an accurate analytical description of our observations. Providing the demonstrated flexibility in connecting various atomic transitions with telecom wavelengths, we show a promising approach to realize an essential building block for quantum repeaters.

          Related collections

          Author and article information

          Journal
          1510.01198

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article