41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Highly Prolific Phenotype of Lacaune Sheep Is Associated with an Ectopic Expression of the B4GALNT2 Gene within the Ovary

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecL L . Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecL L carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 ( IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 ( B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecL L . B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecL L / FecL L ewes at mRNA and protein levels. In FecL L carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.

          Author Summary

          Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in ovarian function and female fertility. Indeed, fecundity genes of the Bone Morphogenetic Protein (BMP) family discovered in sheep was evidenced as genetic candidates to explain female infertility pathologies. Studying French Lacaune sheep breed, we discovered another fecundity gene named B4GALNT2, encoding a glycosylation enzyme that is not related to the BMP family. The high prolificacy of Lacaune sheep was explained by overexpression of B4GALNT2 in the ovary leading to atypical glycosylation of inhibin, an important hormone regulating ovarian function. Our findings open promising fields of investigation to better understand female fertility disorders.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.

          We present a statistical model to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra made by database search applications such as SEQUEST. Employing the expectation maximization algorithm, the analysis learns to distinguish correct from incorrect database search results, computing probabilities that peptide assignments to spectra are correct based upon database search scores and the number of tryptic termini of peptides. Using SEQUEST search results for spectra generated from a sample of known protein components, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly and incorrectly assigned peptides. This analysis makes it possible to filter large volumes of MS/MS database search results with predictable false identification error rates and can serve as a common standard by which the results of different research groups are compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

            Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs.

              The RNA-binding protein IGF2BP1 (IGF-II mRNA binding protein 1) stabilizes the c-myc RNA by associating with the Coding Region instability Determinant (CRD). If and how other proteins cooperate with IGF2BP1 in promoting stabilization of the c-myc mRNA via the CRD remained elusive. Here, we identify various RNA-binding proteins that associate with IGF2BP1 in an RNA-dependent fashion. Four of these proteins (HNRNPU, SYNCRIP, YBX1, and DHX9) were essential to ensure stabilization of the c-myc mRNA via the CRD. These factors associate with IGF2BP1 in a CRD-dependent manner, co-distribute with IGF2BP1 in non-polysomal fractions comprising c-myc mRNA, and colocalize with IGF2BP1 in the cytoplasm. A selective shift of relative c-myc mRNA levels to the polysomal fraction is observed upon IGF2BP1 knockdown. These findings suggest that IGF2BP1 in complex with at least four proteins promotes CRD-mediated mRNA stabilization. Complex formation at the CRD presumably limits the transfer of c-myc mRNA to the polysomal fraction and subsequent translation-coupled decay.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2013
                September 2013
                26 September 2013
                : 9
                : 9
                : e1003809
                Affiliations
                [1 ]INRA-ENVT, UMR 444, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
                [2 ]INRA UMR 85, CNRS UMR 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
                [3 ]INRA, SIGENAE, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
                [4 ]INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France
                [5 ]INRA, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, Nouzilly, France
                [6 ]UMR 1331 INRA-ENVT-EIP-INPT-UPS, Toxicologie Alimentaire, Toulouse, France
                [7 ]INRA, UR 631, Station d'Amélioration Génétique des Animaux, Castanet-Tolosan, France
                University of Bern, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LD CM PM SF. Performed the experiments: LD CM JS KT FW CV SF. Analyzed the data: LD CM PB GH SF. Contributed reagents/materials/analysis tools: LD CM JS KT FW PB JL GH. Wrote the paper: LD CM DM LB PM SF. Contributed equally to the work: LD CM.

                Article
                PGENETICS-D-13-00918
                10.1371/journal.pgen.1003809
                3784507
                24086150
                0b231d58-37b0-4295-9729-9c4be2d8317d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 April 2013
                : 6 August 2013
                Page count
                Pages: 12
                Funding
                This work was supported by grants from the French “Conseil Régional Midi-Pyrénées”, “Agence Nationale de la Recherche” GENOVUL project (ANR-05-GANI-001-01) and European Union contract SABRE (FOOD-CT-2006-01625). LD and CM were supported in part by a grant from the “Fonds d'Aide à la Recherche Organon, FARO” and “Région Centre”, respectively. The high-resolution mass spectrometer was financed (SMHART project) by the European Regional Development Fund (ERDF), the Conseil Régional du Centre, the French National Institute for Agricultural Research (INRA) and the French National Institute of Health and Medical Research (INSERM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article