20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperthermia Induces Apoptosis through Endoplasmic Reticulum and Reactive Oxygen Species in Human Osteosarcoma Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          ER stress-induced cell death mechanisms.

          The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. © 2013.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Life-or-death decisions by the Bcl-2 protein family.

            In response to intracellular damage and certain physiological cues, cells enter the suicide program termed apoptosis, executed by proteases called caspases. Commitment to apoptosis is typically governed by opposing factions of the Bcl-2 family of cytoplasmic proteins. Initiation of the proteolytic cascade requires assembly of certain caspase precursors on a scaffold protein, and the Bcl-2 family determines whether this complex can form. Its pro-survival members can act by sequestering the scaffold protein and/or by preventing the release of apoptogenic molecules from organelles such as mitochondria. Pro-apoptotic family members act as sentinels for cellular damage: cytotoxic signals induce their translocation to the organelles where they bind to their pro-survival relatives, promote organelle damage and trigger apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis

              According to current understanding, cytoplasmic events including activation of protease cascades and mitochondrial permeability transition (PT) participate in the control of nuclear apoptosis. However, the relationship between protease activation and PT has remained elusive. When apoptosis is induced by cross-linking of the Fas/APO-1/CD95 receptor, activation of interleukin-1β converting enzyme (ICE; caspase 1) or ICE-like enzymes precedes the disruption of the mitochondrial inner transmembrane potential (ΔΨm). In contrast, cytosolic CPP32/ Yama/Apopain/caspase 3 activation, plasma membrane phosphatidyl serine exposure, and nuclear apoptosis only occur in cells in which the ΔΨm is fully disrupted. Transfection with the cowpox protease inhibitor crmA or culture in the presence of the synthetic ICE-specific inhibitor Ac-YVAD.cmk both prevent the ΔΨm collapse and subsequent apoptosis. Cytosols from anti-Fas–treated human lymphoma cells accumulate an activity that induces PT in isolated mitochondria in vitro and that is neutralized by crmA or Ac-YVAD.cmk. Recombinant purified ICE suffices to cause isolated mitochondria to undergo PT-like large amplitude swelling and to disrupt their ΔΨm. In addition, ICE-treated mitochondria release an apoptosis-inducing factor (AIF) that induces apoptotic changes (chromatin condensation and oligonucleosomal DNA fragmentation) in isolated nuclei in vitro. AIF is a protease (or protease activator) that can be inhibited by the broad spectrum apoptosis inhibitor Z-VAD.fmk and that causes the proteolytical activation of CPP32. Although Bcl-2 is a highly efficient inhibitor of mitochondrial alterations (large amplitude swelling + ΔΨm collapse + release of AIF) induced by prooxidants or cytosols from ceramide-treated cells, it has no effect on the ICE-induced mitochondrial PT and AIF release. These data connect a protease activation pathway with the mitochondrial phase of apoptosis regulation. In addition, they provide a plausible explanation of why Bcl-2 fails to interfere with Fas-triggered apoptosis in most cell types, yet prevents ceramide- and prooxidant-induced apoptosis.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 September 2014
                October 2014
                : 15
                : 10
                : 17380-17395
                Affiliations
                [1 ]Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan; E-Mail: chhou@ 123456ntu.edu.tw
                [2 ]Department of Dermatology, Sijhih Cathay General Hospital, Taipei 221, Taiwan; E-Mail: lavande213@ 123456gmail.com
                [3 ]Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
                [4 ]Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Authors to whom correspondence should be addressed; E-Mails: shengmou@ 123456ms.skh.org.tw (S.-M.H.); T010615@ 123456ms.skh.org.tw (J.-F.L.); Tel.: +886-2-2833-2211 (ext. 2066) (S.-M.H.); +886-2-2833-2211 (ext. 9420) (J.-F.L.).
                Article
                ijms-15-17380
                10.3390/ijms151017380
                4227168
                25268613
                0b23b34d-8a77-46d6-ac6f-825dcf722d1d
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2014
                : 12 August 2014
                : 16 September 2014
                Categories
                Article

                Molecular biology
                osteosarcoma,hyperthermia,endoplasmic reticulum (er) stress,reactive oxygen species (ros)

                Comments

                Comment on this article