Blog
About

29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carotenoids: potential allies of cardiovascular health?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD) prevention. In fact, the oxidation of low-density lipoproteins (LDL) in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein), and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

          Related collections

          Most cited references 127

          • Record: found
          • Abstract: found
          • Article: not found

          The role of oxidants and free radicals in reperfusion injury.

          While timely reperfusion of acute ischemic myocardium is essential for myocardial salvage, reperfusion results in a unique form of myocardial damage. Functional alterations occur, including depressed contractile function and decreased coronary flow as well as altered vascular reactivity. Both myocardial stunning and infarction are seen. Over the last two decades, it has become increasingly clear that oxidant and oxygen radical formation is greatly increased in the post-ischemic heart and serves as a critical central mechanism of post-ischemic injury. This oxidant formation is generated through a series of interacting pathways in cardiac myocytes and endothelial cells and triggers subsequent leukocyte chemotaxis and inflammation. Nitric oxide (NO) production and NO levels are also greatly increased in ischemic and post-ischemic myocardium, and this occurs through NO synthase (NOS)-dependent NO formation and NOS-independent nitrite reduction. Recently, it has been shown that the pathways of oxygen radical and NO generation interact and can modulate each other. Under conditions of oxidant stress, NOS can switch from NO to oxygen radical generation. Under ischemic conditions, xanthine oxidase can reduce nitrite to generate NO. NO and peroxynitrite can inhibit pathways of oxygen radical generation, and, in turn, oxidants can inhibit NO synthesis from NOS. Ischemic preconditioning markedly decreases NO and oxidant generation, and this appears to be an important mechanism contributing to preconditioning-induced myocardial protection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae.

            The ketocarotenoid astaxanthin can be found in the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp., and the red yeast Phaffia rhodozyma. The microalga H. pluvialis has the highest capacity to accumulate astaxanthin up to 4-5% of cell dry weight. Astaxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases, and has considerable potential and promising applications in human health. Numerous studies have shown that astaxanthin has potential health-promoting effects in the prevention and treatment of various diseases, such as cancers, chronic inflammatory diseases, metabolic syndrome, diabetes, diabetic nephropathy, cardiovascular diseases, gastrointestinal diseases, liver diseases, neurodegenerative diseases, eye diseases, skin diseases, exercise-induced fatigue, male infertility, and HgCl₂-induced acute renal failure. In this article, the currently available scientific literature regarding the most significant activities of astaxanthin is reviewed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of the interaction among dietary antioxidants and reactive oxygen species.

              During normal cellular activities, various processes inside of cells produce reactive oxygen species (ROS). Some of the most common ROS are hydrogen peroxide (H(2)O(2)), superoxide ion (O(2)(-)), and hydroxide radical (OH(-)). These compounds, when present in a high enough concentration, can damage cellular proteins and lipids or form DNA adducts that may promote carcinogenic activity. The purpose of antioxidants in a physiological setting is to prevent ROS concentrations from reaching a high-enough level within a cell that damage may occur. Cellular antioxidants may be enzymatic (catalase, glutathione peroxidase, superoxide dismutase) or nonenzymatic (glutathione, thiols, some vitamins and metals, or phytochemicals such as isoflavones, polyphenols, and flavanoids). Reactive oxygen species are a potential double-edged sword in disease prevention and promotion. Whereas generation of ROS once was viewed as detrimental to the overall health of the organism, advances in research have shown that ROS play crucial roles in normal physiological processes including response to growth factors, the immune response, and apoptotic elimination of damaged cells. Notwithstanding these beneficial functions, aberrant production or regulation of ROS activity has been demonstrated to contribute to the development of some prevalent diseases and conditions, including cancer and cardiovascular disease (CVD). The topic of antioxidant usage and ROS is currently receiving much attention because of studies linking the use of some antioxidants with increased mortality in primarily higher-risk populations and the lack of strong efficacy data for protection against cancer and heart disease, at least in populations with adequate baseline dietary consumption. In normal physiological processes, antioxidants effect signal transduction and regulation of proliferation and the immune response. Reactive oxygen species have been linked to cancer and CVD, and antioxidants have been considered promising therapy for prevention and treatment of these diseases, especially given the tantalizing links observed between diets high in fruits and vegetables (and presumably antioxidants) and decreased risks for cancer.
                Bookmark

                Author and article information

                Journal
                Food Nutr Res
                Food Nutr Res
                FNR
                Food & Nutrition Research
                Co-Action Publishing
                1654-6628
                1654-661X
                06 February 2015
                2015
                : 59
                Affiliations
                [1 ]Human and Clinical Nutrition Unit, Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio, Chieti, Italy
                [2 ]Cardiology Unit, Cardiology Department, San Camillo De Lellis Hospital, Manfredonia, Italy
                Author notes
                [* ] Maria Alessandra Gammone, Human and Clinical Nutrition Unit, Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio, Via Dei Vestini, 31, IT-66013 Chieti, Italy. Email: m.alessandra.gammone@ 123456gmail.com
                Article
                26762
                10.3402/fnr.v59.26762
                4321000
                25660385
                © 2015 Maria Alessandra Gammone et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Comments

                Comment on this article