12
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simultaneous occurrence of knee septic arthritis and coronavirus disease 2019 (COVID-19): A case report

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Background

          Coronavirus disease 2019 (COVID-19) pandemic is increasingly recognized as a serious, worldwide public health concern. Most of the patients with COVID-19 are asymptomatic or show mild symptoms. It is important to identify the unusual manifestations and their long-term complication. Case presentation: A case of COVID-19 in 45 years old man with septic arthritis due to Staphylococcus aureus is presented. COVID-19 was diagnosed using real-time polymerase chain reaction without obvious clinical manifestation. The patient had no history of trauma or inflammatory arthritis and had progressive left knee pain and limitation of movement. Knee X-ray was normal. Aspiration of the knee joint fluid showed a cloudy and purulent appearance. The patient was admitted to hospital and immediately treated with vancomycin 1gr/ 12 hr. A polymerized chain reaction (PCR) test for COVID-19 was performed, which was positive 24 hours after hospitalization. Staphylococcus aureus was reported in synovial fluid culture which was sensitive to vancomycin and ciprofloxacin, thus vancomycin was continued. On the 4 th day of hospitalization the patient had cough, therefore underwent CT scan lungs and ground-glass opacities (GGO) characteristic of COVID-19 were noticed. Favipiravir and interferon were started. Patient’s knee aspiration was performed for 5 consecutive days. On the 6 th day of hospitalization, joint fluid markedly decreased and the patient's oxygen saturation was 96%. One week after hospitalization, the patient was discharged and a month later knee examination was completely normal. Conclusions: Septic arthritis should be considered in the manifestations or co-morbidity of COVID-19 patients with joint pain, swelling or redness.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients

            The novel contagious primary atypical pneumonia epidemic, which broke out in Wuhan, China, in December 2019, is now formally called Coronavirus Disease 2019 (COVID-19), with the causative virus named as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). 1,2 Recent studies have shown that in addition to dyspnea, hypoxemia, and acute respiratory distress, lymphopenia, and cytokine release syndrome are also important clinical features in patients with severe SARS-CoV-2 infection. 3 This suggests that homeostasis of the immune system plays an important role in the development of COVID-19 pneumonia. To provide direct evidence on leukocyte homeostasis, we studied the immunological characteristics of peripheral blood leukocytes from 16 patients admitted to the Yunnan Provincial Hospital of Infectious Diseases, Kunming, China. Among them, 10 were mild cases, 6 were severe cases; 7 were ≥50 years old, 11 were younger; and 6 had baseline diabetes, hypertension, or coronary atherosclerosis (Supplementary Table S1). Similar to the healthy group (n = 6), the absolute numbers of cells of major leukocyte subsets in peripheral blood remained at a normal level in both mild and severe patients. Different from that reported by Chen et al., 4 we did not observe increased neutrophils or decreased lymphocytes. Instead, we found that the severe group had a significant reduction in granulocytes compared to the mild group (Fig. 1a). It has been reported that elevated inflammatory mediators play a crucial role in fatal pneumonia caused by pathogenic human coronaviruses such as SARS and MERS (Middle East respiratory syndrome). 5 We therefore examined whether inflammatory mediators can impact progression in COVID-19 patients. However, no statistical differences in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) plasma concentrations were found among the three groups. Although patients had higher sCD14 levels than healthy people, there were no significant differences between the severe and mild groups (Fig. 1b). Fig. 1 COVID-19 patients, especially those with severe infection, showed increased levels of regulatory molecules and decreased levels of multiple cytokines in peripheral blood T cells. a Heat maps comparing peripheral blood leukocyte subset concentrations in healthy (n = 6), mild (n = 10), and severe (n = 6) patients. Rainbow-colored squares represent mean values of each group. Red-black-green squares represent log 10 P values, and white asterisk indicates P ≤ 0.05 by post hoc ANOVA test. H, healthy; M, mild; S, severe. b Comparisons of IL-6, TNF-α, and sCD14 plasma concentrations in healthy, mild, and severe groups. n.s., P > 0.05, *, P ≤ 0.05, by Kruskal–Wallis test. c Comparisons of expression levels of activation-, regulation-, and function-related molecules in CD4+ and CD8+ T cells among groups. Rainbow-colored squares represent mean positive cell rate for each group. d Comparisons of cell expression modules of exhaustion-related (CTLA-4, PD-1, and TIGIT) and function-related (IFN-γ, TNFα, and IL-2) molecules in CD4+ or CD8+ T cells among groups. “Single” indicates that cell only expresses one of the three molecules, “Multi” indicates that cell expresses at least two of the three molecules, “Non” indicates that cell expresses none of the three molecules. Red-yellow-blue squares indicate average cell expression rates of different modules of three groups, respectively. e Correlation network analysis of markers with significant differences among groups. Nodes are colored based on cell type for three groups. Node size indicates relative strength value according to centrality analysis. Thicker lines indicate more correlated genes. Green lines represent significantly positive Spearman’s correlation coefficients ≥0.40; red lines represent significantly negative Spearman’s correlation coefficients ≤−0.40. f Hierarchical clustering of participants based on all immunological risk indicators Virus-induced inflammatory factor storms can cause a systemic T cell response, reflected as changes in the differentiation and activity of T cells. 6 Here, as significant differences in virus-induced inflammatory cytokines were not detected, we next examined whether homeostasis was perturbed in T cells at the cellular level (Supplementary Table S2, Supplementary Fig. S1). As shown in Fig. 1c, the proportions of multiple molecules related to T cell activation and regulation increased significantly in patients compared to healthy controls, but several functional molecules showed a marked decrease. Among the differentially expressed functional molecules, the levels of interferon-γ (IFN-γ) and TNF-α in CD4+ T cells were lower in the severe group than in the mild group, whereas the levels of granzyme B and perforin in CD8+ T cells were higher in the severe group than in the mild group. The activation molecules showed no differences in CD4+ T cells, whereas the levels of HLA-DR and TIGIT in CD8+ T cells were higher in the severe group than in the mild group (Fig. 1c). These data indicate that COVID-19, similar to some chronic infections, damages the function of CD4+ T cells and promotes excessive activation and possibly subsequent exhaustion of CD8+ T cells. Together, these perturbations of T cell subsets may eventually diminish host antiviral immunity. 7 Usually a single molecule does not adequately predict disease progression. We therefore further performed cluster analysis on marker expression using data obtained from flow cytometry. Our results showed significant differences among the three subject groups in the level of exhaustion modules, including PD-1, CTLA-4, and TIGIT, and functional modules, including IFN-γ, TNF-α, and IL-2 (Supplementary Figs. S2, 3). Compared with the healthy control and mild group, the frequency of multi-functional CD4+ T cells (positive for at least two cytokines) decreased significantly in the severe group, whereas the proportion of non-functional (IFN-γ−TNF-α−IL-2−) subsets increased significantly. Studies have shown that multi-functional T cells can better control human immunodeficiency virus in natural infection and are correlated with better outcomes during vaccination; thus, the functional damage of CD4+ T cells may have predisposed COVID-19 patients to severe disease. 8 Li et al. 9 showed that these multi-functional CD4+ T cells occur more frequently in patients with severe SARS infections than in moderate infections. This indicates that SARS-CoV-2 may possess a unique immune pathology compared to other coronaviruses. In CD8+ T cells, the frequency of the non-exhausted (PD-1−CTLA-4−TIGIT−) subset in the severe group was significantly lower than that in the other two groups (Fig. 1d). Because functional blockade of PD-1, CTLA-4, and TIGIT is beneficial for CD8+ T cells to maintain lasting antigen-specific immunity and antiviral effects, 10,11 the excessive exhaustion of CD8+ T cells in severe patients may reduce their cellular immune response to SARS-CoV-2. To gain a comprehensive view of the above measured parameters, we also performed a correlation network analysis, and identified variables significantly related to COVID-19 disease progression, including age, chronic ailment, loss of functional diversity in CD4+ T cells, and increased expression of regulatory molecules, especially TIGIT, in CD8+ T cells (Fig. 1e). Subsequent hierarchical cluster analysis showed that these immunological factors could better distinguish healthy, mild, and severe patients, independent of age and chronic ailment (Fig. 1f). In conclusion, our study identified potential immunological risk factors for COVID-19 pneumonia and provided clues for its clinical treatment. Supplementary information Supplementary material
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19: discovery, diagnostics and drug development

              An epidemic of acute respiratory syndrome (Covid-19) started in humans in Wuhan in 2019, and became a pandemic. Groups from China Identified and sequenced the virus responsible for COVID-19, named SARS-CoV-2, and determined that it was a novel coronavirus (CoV) that shared high sequence identity with bat- and pangolin-derived SARS-like CoVs, suggesting a zoonotic origin. SARS-CoV-2 is a member of Coronaviridae, a family of enveloped, positive-sense, single-stranded RNA viruses that infect a broad range of vertebrates. The rapid release of the sequence of the virus has allowed the development of diagnostic tools (e.g., RT-PCR). Additionally, serological tests can allow identification of persons who have been infected. In humans, CoVs tend to cause mild to moderate upper respiratory tract infections. The fatality rate is around 1-3% for infected persons. An acute respiratory distress syndrome (ARDS) likely due to an uncontrolled immune activation (“cytokine storm”) occurs in patients with severe disease and poor prognosis. Risk factors for mortality include: advanced age, obesity, diabetes, hypertension and other comorbidities. Drug repurposing has been used to rapidly identify potential treatment for COVID-19, which could move quickly to phase-3. Better knowledge of the virus, its enzymes, will be mandatory to develop more potent and specific direct-acting antiviral agents (DAA). In the long term, a vaccine to prevent infection would be crucial; however even if successful it might not be available before 2021-22. To date, with the exception of intravenous Remdesivir and dexamethasone, which have modest effects in moderate to severe COVID-19, no strong clinical evidence supports the efficacy and safety of any other drugs against SARS-CoV-2. The aim of this review is to provide insights on the discovery of SARS-CoV-2, its virology, the diagnostic tools, and the ongoing drug discovery effort.
                Bookmark

                Author and article information

                Journal
                The Egyptian Rheumatologist
                1110-1164
                2090-2433
                22 June 2022
                22 June 2022
                Affiliations
                [a ]Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
                [b ]Department of Infectious Diseases and tropical medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
                [c ]Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
                Author notes
                [* ]Corresponding author.
                Article
                S1110-1164(22)00090-4
                10.1016/j.ejr.2022.06.001
                9217139
                0b37751f-3d06-4cf0-a23d-26a03737efcf
                .

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 2 June 2022
                : 16 June 2022
                Categories
                Article

                covid-19,septic arthritis,arthritis
                covid-19, septic arthritis, arthritis

                Comments

                Comment on this article