27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oligodendrocytes in Development, Myelin Generation and Beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.

          Related collections

          Most cited references177

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            White matter in learning, cognition and psychiatric disorders.

            White matter is the brain region underlying the gray matter cortex, composed of neuronal fibers coated with electrical insulation called myelin. Previously of interest in demyelinating diseases such as multiple sclerosis, myelin is attracting new interest as an unexpected contributor to a wide range of psychiatric disorders, including depression and schizophrenia. This is stimulating research into myelin involvement in normal cognitive function, learning and IQ. Myelination continues for decades in the human brain; it is modifiable by experience, and it affects information processing by regulating the velocity and synchrony of impulse conduction between distant cortical regions. Cell-culture studies have identified molecular mechanisms regulating myelination by electrical activity, and myelin also limits the critical period for learning through inhibitory proteins that suppress axon sprouting and synaptogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The origin and development of glial cells in peripheral nerves.

              During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                12 November 2019
                November 2019
                : 8
                : 11
                : 1424
                Affiliations
                Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; skuhn01@ 123456qub.ac.uk (S.K.); l.gritti@ 123456qub.ac.uk (L.G.); dcrooks03@ 123456qub.ac.uk (D.C.)
                Author notes
                [* ]Correspondence: y.dombrowski@ 123456qub.ac.uk ; Tel.: +0044-28-9097-6127
                [†]

                These authors contributed equally.

                Article
                cells-08-01424
                10.3390/cells8111424
                6912544
                31726662
                0b409d7b-ff86-491b-b72e-7ffc0def73eb
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 October 2019
                : 07 November 2019
                Categories
                Review

                oligodendrocytes,opc,oligodendrocyte progenitor cells,myelin,myelination,remyelination,multiple sclerosis

                Comments

                Comment on this article