138
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083 T together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083 T in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

            Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The minimum information about a genome sequence (MIGS) specification.

              With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stand Genomic Sci
                Stand Genomic Sci
                Standards in Genomic Sciences
                BioMed Central
                1944-3277
                2014
                8 December 2014
                : 9
                : 2
                Affiliations
                [1 ]Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
                [2 ]Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
                [3 ]LGC Genomics GmbH, Ostendstraße 25, 12459 Berlin, Germany
                [4 ]DOE Joint Genome Institute, Walnut Creek, Ca, USA
                [5 ]Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
                Article
                1944-3277-9-2
                10.1186/1944-3277-9-2
                4334874
                25780495
                0b49f104-89ee-4593-9b20-161e205865bd
                Copyright © 2014 Meier-Kolthoff et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 June 2014
                : 16 June 2014
                Categories
                Extended Genome Report

                Genetics
                phylogenomics,phylotypes,gbdp,opm,phenotype,clustering,supermatrix,dna:dna hybridization,g+c content
                Genetics
                phylogenomics, phylotypes, gbdp, opm, phenotype, clustering, supermatrix, dna:dna hybridization, g+c content

                Comments

                Comment on this article