64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasmids and Rickettsial Evolution: Insight from Rickettsia felis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria.

          Methodology/Principal Findings

          Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFδ, is an artifact of the original genome assembly.

          Conclusion/Significance

          Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          The 1.2-megabase genome sequence of Mimivirus.

          We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amelioration of bacterial genomes: rates of change and exchange.

            Although bacterial species display wide variation in their overall GC contents, the genes within a particular species' genome are relatively similar in base composition. As a result, sequences that are novel to a bacterial genome-i.e., DNA introduced through recent horizontal transfer-often bear unusual sequence characteristics and can be distinguished from ancestral DNA. At the time of introgression, horizontally transferred genes reflect the base composition of the donor genome; but, over time, these sequences will ameliorate to reflect the DNA composition of the new genome because the introgressed genes are subject to the same mutational processes affecting all genes in the recipient genome. This process of amelioration is evident in a large group of genes involved in host-cell invasion by enteric bacteria and can be modeled to predict the amount of time required after transfer for foreign DNA to resemble native DNA. Furthermore, models of amelioration can be used to estimate the time of introgression of foreign genes in a chromosome. Applying this approach to a 1.43-megabase continuous sequence, we have calculated that the entire Escherichia coli chromosome contains more than 600 kb of horizontally transferred, protein-coding DNA. Estimates of amelioration times indicate that this DNA has accumulated at a rate of 31 kb per million years, which is on the order of the amount of variant DNA introduced by point mutations. This rate predicts that the E. coli and Salmonella enterica lineages have each gained and lost more than 3 megabases of novel DNA since their divergence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microorganisms resistant to free-living amoebae.

              Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2007
                7 March 2007
                : 2
                : 3
                : e266
                Affiliations
                [1 ]Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
                [2 ]Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
                Utrecht University, Netherlands
                Author notes
                * To whom correspondence should be addressed. E-mail: aazad@ 123456umaryland.edu

                Conceived and designed the experiments: AA JG MB MR. Performed the experiments: JG JS. Analyzed the data: JG JS. Contributed reagents/materials/analysis tools: AA BS JG AP. Wrote the paper: AA BS JG MB MR NA AP.

                Article
                06-PONE-RA-00531R1
                10.1371/journal.pone.0000266
                1800911
                17342200
                0b4b5cd0-e3f7-4c94-bce6-874c992bb4c8
                Gillespie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 December 2006
                : 8 February 2007
                Page count
                Pages: 17
                Categories
                Research Article
                Computational Biology/Comparative Sequence Analysis
                Computational Biology/Genomics
                Computational Biology/Molecular Genetics
                Computational Biology/Protein Homology Detection
                Evolutionary Biology/Bioinformatics
                Evolutionary Biology/Evolutionary and Comparative Genetics
                Evolutionary Biology/Genomics
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Microbial Evolution and Genomics
                Microbiology/Parasitology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article