15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical lifting energy consumption in work activities designed by means of the “revised NIOSH lifting equation”

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aims of the present work were: to calculate lifting energy consumption (LEC) in work activities designed to have a growing lifting index (LI) by means of revised NIOSH lifting equation; to evaluate the relationship between LEC and forces at the L 5-S 1 joint. The kinematic and kinetic data of 20 workers were recorded during the execution of lifting tasks in three conditions. We computed kinetic, potential and mechanical energy and the corresponding LEC by considering three different centers of mass of: 1) the load (CoM L); 2) the multi-segment upper body model and load together (CoM Upp+L); 3) the whole body and load together (CoM Tot). We also estimated compression and shear forces. Results shows that LEC calculated for CoM Upp+L and CoM Tot grew significantly with the LI and that all the lifting condition pairs are discriminated. The correlation analysis highlighted a relationship between LEC and forces that determine injuries at the L 5-S 1 joint.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters.

          P. de Leva (1996)
          Zatsiorsky et al. (in Contemporary Problems in Biomechanics, pp. 272-291, CRC Press, Massachusetts, 1990a) obtained, by means of a gamma-ray scanning technique, the relative body segment masses, center of mass (CM) positions, and radii of gyration for samples of college-aged Caucasian males and females. Although these data are the only available and comprehensive set of inertial parameters regarding young adult Caucasians, they have been rarely utilized for biomechanical analyses of subjects belonging to the same or a similar population. The main reason is probably that Zatsiorsky et al. used bony landmarks as reference points for locating segment CMs and defining segment lengths. Some of these landmarks were markedly distant from the joint centers currently used by most researchers as reference points. The purpose of this study was to adjust the mean relative CM positions and radii of gyration reported by Zatsiorsky et al., in order to reference them to the joint centers or other commonly used landmarks, rather than the original landmarks. The adjustments were based on a number of carefully selected sources of anthropometric data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies.

            This systematic review was designed and conducted in an effort to evaluate the evidence currently available for the many suggested risk factors for work-related musculoskeletal disorders. To identify pertinent literature we searched four electronic databases (Cinahl, Embase, Medline, and The Cochrane Library). The search strategies combined terms for musculoskeletal disorders, work, and risk factors. Only case-control or cohort studies were included. A total of 1,761 non-duplicated articles were identified and screened, and 63 studies were reviewed and integrated in this article. The risk factors identified for the development of work-related musculoskeletal disorders were divided and organized according to the affected body part, type of risk factor (biomechanical, psychosocial, or individual) and level of evidence (strong, reasonable, or insufficient evidence). Risk factors with at least reasonable evidence of a causal relationship for the development of work-related musculoskeletal disorders include: heavy physical work, smoking, high body mass index, high psychosocial work demands, and the presence of co-morbidities. The most commonly reported biomechanical risk factors with at least reasonable evidence for causing WMSD include excessive repetition, awkward postures, and heavy lifting. Additional high methodological quality studies are needed to further understand and provide stronger evidence of the causal relationship between risk factors and work-related musculoskeletal disorders. The information provided in this article may be useful to healthcare providers, researchers, and ergonomists interested on risk identification and design of interventions to reduce the rates of work-related musculoskeletal disorders. 2009 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation.

              When using optoelectronic stereophotogrammetry, skin deformation and displacement causes marker movement with respect to the underlying bone. This movement represents an artifact, which affects the estimation of the skeletal system kinematics, and is regarded as the most critical source of error in human movement analysis. A comprehensive review of the state-of-the-art for assessment, minimization and compensation of the soft tissue artifact (STA) is provided. It has been shown that STA is greater than the instrumental error associated with stereophotogrammetry, has a frequency content similar to the actual bone movement, is task dependent and not reproducible among subjects and, of lower limb segments, is greatest at the thigh. It has been shown that in in vivo experiments only motion about the flexion/extension axis of the hip, knees and ankles can be determined reliably. Motion about other axes at those joints should be regarded with much more caution as this artifact produces spurious effects with magnitudes comparable to the amount of motion actually occurring in those joints. Techniques designed to minimize the contribution of and compensate for the effects of this artifact can be divided up into those which model the skin surface and those which include joint motion constraints. Despite the numerous solutions proposed, the objective of reliable estimation of 3D skeletal system kinematics using skin markers has not yet been satisfactorily achieved and greatly limits the contribution of human movement analysis to clinical practice and biomechanical research. For STA to be compensated for effectively, it is here suggested that either its subject-specific pattern is assessed by ad hoc exercises or it is characterized from a large series of measurements on different subject populations. Alternatively, inclusion of joint constraints into a more general STA minimization approach may provide an acceptable solution.
                Bookmark

                Author and article information

                Journal
                Ind Health
                Ind Health
                INDHEALTH
                Industrial Health
                National Institute of Occupational Safety and Health, Japan
                0019-8366
                1880-8026
                07 August 2017
                September 2017
                : 55
                : 5
                : 444-454
                Affiliations
                [1 ]Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Italy
                [2 ]Department of Engineering, Roma TRE University, Italy
                [3 ]Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Italy
                Author notes
                [*]*To whom correspondence should be addressed. E-mail: tiwana.varrecchia@ 123456uniroma3.it
                Article
                2017-0075
                10.2486/indhealth.2017-0075
                5633360
                28781290
                0b52e1ff-6459-4ea6-8e3b-c6c747a7545f
                ©2017 National Institute of Occupational Safety and Health

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 18 May 2017
                : 31 July 2017
                Categories
                Original Article

                mechanical energy consumption,biomechanical risk assessment,lifting index (li),work-related low-back disorders (wlbds),revised niosh (national institute for occupational safety and health) lifting equation (rnle)

                Comments

                Comment on this article