1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nutritional influences on epigenetics and age-related disease.

      The Proceedings of the Nutrition Society
      Aging, genetics, Animals, Cardiovascular Diseases, DNA Methylation, Diet, Epigenesis, Genetic, Epigenomics, Humans, Micronutrients, metabolism, Neoplasms, Neurodegenerative Diseases, S-Adenosylhomocysteine, S-Adenosylmethionine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nutritional epigenetics has emerged as a novel mechanism underlying gene-diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modulates gene expression without changes in the underlying bp sequence, ultimately determining phenotype from genotype. DNA methylation and post-translational histone modifications are classical levels of epigenetic regulation. Epigenetic phenomena are critical from embryonic development through the aging process, with aberrations in epigenetic patterns emerging as aetiological mechanisms in many age-related diseases such as cancer, CVD and neurodegenerative disorders. Nutrients can act as the source of epigenetic modifications and can regulate the placement of these modifications. Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6, riboflavin, methionine, choline and betaine, are involved in DNA methylation by regulating levels of the universal methyl donor S-adenosylmethionine and methyltransferase inhibitor S-adenosylhomocysteine. Other nutrients and bioactive food components such as retinoic acid, resveratrol, curcumin, sulforaphane and tea polyphenols can modulate epigenetic patterns by altering the levels of S-adenosylmethionine and S-adenosylhomocysteine or directing the enzymes that catalyse DNA methylation and histone modifications. Aging and age-related diseases are associated with profound changes in epigenetic patterns, though it is not yet known whether these changes are programmatic or stochastic in nature. Future work in this field seeks to characterise the epigenetic pattern of healthy aging to ultimately identify nutritional measures to achieve this pattern.

          Related collections

          Author and article information

          Comments

          Comment on this article