29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13–15) and moderate (GCS 9–12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: not found
          • Article: not found

          Functions of lysosomes.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function.

            During ischemic brain injury, glutamate accumulation leads to overstimulation of postsynaptic glutamate receptors with intracellular Ca2+ overload and neuronal cell death. Here we show that glutamate can induce either early necrosis or delayed apoptosis in cultures of cerebellar granule cells. During and shortly after exposure to glutamate, a subpopulation of neurons died by necrosis. In these cells, mitochondrial membrane potential collapsed, nuclei swelled, and intracellular debris were scattered in the incubation medium. Neurons surviving the early necrotic phase recovered mitochondrial potential and energy levels. Later, they underwent apoptosis, as shown by the formation of apoptotic nuclei and by chromatin degradation into high and low molecular weight fragments. These results suggest that mitochondrial function is a critical factor that determines the mode of neuronal death in excitotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffuse axonal injury in head injury: definition, diagnosis and grading.

              Diffuse axonal injury is one of the most important types of brain damage that can occur as a result of non-missile head injury, and it may be very difficult to diagnose post mortem unless the pathologist knows precisely what he is looking for. Increasing experience with fatal non-missile head injury in man has allowed the identification of three grades of diffuse axonal injury. In grade 1 there is histological evidence of axonal injury in the white matter of the cerebral hemispheres, the corpus callosum, the brain stem and, less commonly, the cerebellum; in grade 2 there is also a focal lesion in the corpus callosum; and in grade 3 there is in addition a focal lesion in the dorsolateral quadrant or quadrants of the rostral brain stem. The focal lesions can often only be identified microscopically. Diffuse axonal injury was identified in 122 of a series of 434 fatal non-missile head injuries--10 grade 1, 29 grade 2 and 83 grade 3. In 24 of these cases the diagnosis could not have been made without microscopical examination, while in a further 31 microscopical examination was required to establish its severity.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                October 2010
                26 October 2010
                : 14
                : 10
                : 2381-2392
                Affiliations
                Department of Neurology, Radboud University Nijmegen Medical Centre Nijmegen, The Netherlands
                Author notes
                *Correspondence to: Pieter E. VOS, M.D., Ph.D., Department of Neurology (935), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. Tel.: + 31 24 3613396 Fax: + 31 24 3541122 E-mail: P.Vos@ 123456neuro.umcn.nl
                [#]

                Both authors contributed equally to the paper.

                Article
                10.1111/j.1582-4934.2010.01164.x
                3823156
                20738443
                0b59e86d-0cd6-44e6-98fe-630f52f21b1b
                © 2010 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 22 July 2010
                : 05 August 2010
                Categories
                Reviews

                Molecular medicine
                focal traumatic brain injury,diffuse traumatic brain injury,pathophysiology,traumatic axonal injury,excitotoxicity,mitochondria,axonal disconnection

                Comments

                Comment on this article