22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and the reduction of dopamine levels in the striatum. Although details of the molecular mechanisms underlying dopaminergic neuronal death in PD remain unclear, neuroinflammation is also considered a potent mediator in the pathogenesis and progression of PD. In the present study, we present evidences that microglial NLRP3 inflammasome activation is critical for dopaminergic neuronal loss and the subsequent motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Specifically, NLRP3 deficiency significantly reduces motor dysfunctions and dopaminergic neurodegeneration of MPTP-treated mice. Furthermore, NLRP3 deficiency abolishes MPTP-induced microglial recruitment, interleukin-1β production and caspase-1 activation in the SN of mouse brain. In primary microglia and mixed glial cell cultures, MPTP/ATP treatment promotes the robust assembly and activation of the NLRP3 inflammasome via producing mitochondrial reactive oxygen species. Consistently, 1-methyl-4-phenyl-pyridinium (MPP +) induces NLRP3 inflammasome activation in the presence of ATP or nigericin treatment in mouse bone-marrow-derived macrophages. These findings reveal a novel priming role of neurotoxin MPTP or MPP + for NLRP3 activation. Subsequently, NLRP3 inflammasome-active microglia induces profound neuronal death in a microglia-neuron co-culture model. Furthermore, Cx3Cr1 CreER-based microglia-specific expression of an active NLRP3 mutant greatly exacerbates motor deficits and dopaminergic neuronal loss of MPTP-treated mice. Taken together, our results indicate that microglial NLRP3 inflammasome activation plays a pivotal role in the MPTP-induced neurodegeneration in PD.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome.

          Inflammasomes are involved in diverse inflammatory diseases, so the activation of inflammasomes needs to be tightly controlled to prevent excessive inflammation. However, the endogenous regulatory mechanisms of inflammasome activation are still unclear. Here, we report that the neurotransmitter dopamine (DA) inhibits NLRP3 inflammasome activation via dopamine D1 receptor (DRD1). DRD1 signaling negatively regulates NLRP3 inflammasome via a second messenger cyclic adenosine monophosphate (cAMP), which binds to NLRP3 and promotes its ubiquitination and degradation via the E3 ubiquitin ligase MARCH7. Importantly, in vivo data show that DA and DRD1 signaling prevent NLRP3 inflammasome-dependent inflammation, including neurotoxin-induced neuroinflammation, LPS-induced systemic inflammation, and monosodium urate crystal (MSU)-induced peritoneal inflammation. Taken together, our results reveal an endogenous mechanism of inflammasome regulation and suggest DRD1 as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice.

            Inflammasome activation plays a central role in the development of drug-induced and obesity-associated liver disease. However, the sources and mechanisms of inflammasome-mediated liver damage remain poorly understood. Our aim was to investigate the effect of NLRP3 inflammasome activation on the liver using novel mouse models. We generated global and myeloid cell-specific conditional mutant Nlrp3 knock-in mice expressing the D301N Nlrp3 mutation (ortholog of D303N in human NLRP3), resulting in a hyperactive NLRP3. To study the presence and significance of NLRP3-initiated pyroptotic cell death, we separated hepatocytes from nonparenchymal cells and developed a novel flow-cytometry-based (fluorescence-activated cell sorting; FACS) strategy to detect and quantify pyroptosis in vivo based on detection of active caspase 1 (Casp1)- and propidium iodide (PI)-positive cells. Liver inflammation was quantified histologically by FACS and gene expression analysis. Liver fibrosis was assessed by Sirius Red staining and quantitative polymerase chain reaction for markers of hepatic stellate cell (HSC) activation. NLRP3 activation resulted in shortened survival, poor growth, and severe liver inflammation; characterized by neutrophilic infiltration and HSC activation with collagen deposition in the liver. These changes were partially attenuated by treatment with anakinra, an interleukin-1 receptor antagonist. Notably, hepatocytes from global Nlrp3-mutant mice showed marked hepatocyte pyroptotic cell death, with more than a 5-fold increase in active Casp1/PI double-positive cells. Myeloid cell-restricted mutant NLRP3 activation resulted in a less-severe liver phenotype in the absence of detectable pyroptotic hepatocyte cell death. Our data demonstrate that global and, to a lesser extent, myeloid-specific NLRP3 inflammasome activation results in severe liver inflammation and fibrosis while identifying hepatocyte pyroptotic cell death as a novel mechanism of NLRP3-mediated liver damage. © 2014 by the American Association for the Study of Liver Diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome.

              NLRP3 forms an inflammasome with its adaptor ASC, and its excessive activation can cause inflammatory diseases. However, little is known about the mechanisms that control assembly of the inflammasome complex. Here we show that microtubules mediated assembly of the NLRP3 inflammasome. Inducers of the NLRP3 inflammasome caused aberrant mitochondrial homeostasis to diminish the concentration of the coenzyme NAD(+), which in turn inactivated the NAD(+)-dependent α-tubulin deacetylase sirtuin 2; this resulted in the accumulation of acetylated α-tubulin. Acetylated α-tubulin mediated the dynein-dependent transport of mitochondria and subsequent apposition of ASC on mitochondria to NLRP3 on the endoplasmic reticulum. Therefore, in addition to direct activation of NLRP3, the creation of optimal sites for signal transduction by microtubules is required for activation of the entire NLRP3 inflammasome.
                Bookmark

                Author and article information

                Contributors
                +82 2 2228 1817 , jewookyu@yuhs.ac
                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group UK (London )
                1350-9047
                1476-5403
                21 May 2018
                21 May 2018
                February 2019
                : 26
                : 2
                : 213-228
                Affiliations
                [1 ]ISNI 0000 0004 0470 5454, GRID grid.15444.30, Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, , Yonsei University College of Medicine, ; Seoul, Republic of Korea
                [2 ]ISNI 0000000121053345, GRID grid.35541.36, Doping Control Center, , Korea Institute of Science and Technology, ; Seoul, Republic of Korea
                Article
                124
                10.1038/s41418-018-0124-5
                6329843
                29786072
                0b5db8dd-a56d-4290-9c7c-3108648a43dd
                © The Authors 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 December 2017
                : 26 April 2018
                : 27 April 2018
                Categories
                Article
                Custom metadata
                © ADMC Associazione Differenziamento e Morte Cellulare 2019

                Cell biology
                Cell biology

                Comments

                Comment on this article