Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging

      1 , 1

      American Journal of Physiology-Renal Physiology

      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.

          Related collections

          Most cited references 71

          • Record: found
          • Abstract: found
          • Article: not found

          Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine.

          Concentration of urine in mammals is regulated by the antidiuretic hormone vasopressin. Binding of vasopressin to its V2 receptor leads to the insertion of water channels in apical membranes of principal cells in collecting ducts. In nephrogenic diabetes insipidus (NDI), the kidney fails to concentrate urine in response to vasopressin. A male patient with an autosomal recessive form of NDI was found to be a compound heterozygote for two mutations in the gene encoding aquaporin-2, a water channel. Functional expression studies in Xenopus oocytes revealed that each mutation resulted in nonfunctional water channel proteins. Thus, aquaporin-2 is essential for vasopressin-dependent concentration of urine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains.

            The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites.

              Protein phosphorylation plays a key role in vasopressin signaling in the renal-collecting duct. Large-scale identification and quantification of phosphorylation events triggered by vasopressin is desirable to gain a comprehensive systems-level understanding of this process. We carried out phosphoproteomic analysis of rat inner medullary collecting duct cells by using a combination of phosphopeptide enrichment by immobilized metal affinity chromatography and phosphorylation site identification by liquid chromatography-mass spectrometry(n) neutral loss scanning. A total of 714 phosphorylation sites on 223 unique phosphoproteins were identified from inner medullary collecting duct samples treated short-term with either calyculin A or vasopressin. A number of proteins involved in cytoskeletal reorganization, vesicle trafficking, and transcriptional regulation were identified. Previously unidentified phosphorylation sites were found for membrane proteins essential to collecting duct physiology, including eight sites among aquaporin-2 (AQP2), aquaporin-4, and urea transporter isoforms A1 and A3. Through label-free quantification of phosphopeptides, we identified a number of proteins that significantly changed phosphorylation state in response to short-term vasopressin treatment: AQP2, Bclaf1, LRRC47, Rgl3, and SAFB2. In the presence of vasopressin, AQP2 monophosphorylated at S256 and diphosphorylated AQP2 (pS256/261) increased in abundance, whereas AQP2 monophosphorylated at S261 decreased, raising the possibility that both sites are involved in vasopressin-dependent AQP2 trafficking. This study reveals the practicality of liquid chromatography-mass spectrometry(n) neutral loss scanning for large-scale identification and quantification of protein phosphorylation in the analysis of cell signaling in a native mammalian system.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                July 2019
                July 2019
                : 317
                : 1
                : F124-F132
                Affiliations
                [1 ]Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
                Article
                10.1152/ajprenal.00150.2019
                © 2019

                Comments

                Comment on this article