9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optimal Performance Regions of Feynman’s Ratchet Engine with Different Optimization Criteria

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thermodynamic performance analysis of microscopic Feynman’s engine has always been a hot topic, since it can reveal the operating mechanism of the system and give out the suggestions of performance improvement. The present work explores the optimal performance regions of the ratchet operating, respectively, as heat engine and refrigerator. The major purpose is to obtain the optimal performance bunds and provide theoretical guidelines for the designs of practical microscopic ratchet engine systems. Based on an irreversible Feynman’s ratchet engine, the optimal power output versus thermal efficiency performance and the optimal cooling load versus COP performance in different operation modes are analyzed. The effects of irreversible heat leakage and major design parameters are also explored. By further introducing the ecological function, efficient power, and figure of merit criteria, performance characteristics of ratchet device with different optimization indexes are analyzed and compared with each other. The optimal performance regions concerning different optimization criteria are obtained. The results show that by reasonably selecting design parameters, Feynman’s ratchet can attain the optimal operation conditions for different design purposes.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Stochastic thermodynamics, fluctuation theorems and molecular machines.

          Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficiency of a Carnot engine at maximum power output

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular motors.

              Life implies movement. Most forms of movement in the living world are powered by tiny protein machines known as molecular motors. Among the best known are motors that use sophisticated intramolecular amplification mechanisms to take nanometre steps along protein tracks in the cytoplasm. These motors transport a wide variety of cargo, power cell locomotion, drive cell division and, when combined in large ensembles, allow organisms to move. Motor defects can lead to severe diseases or may even be lethal. Basic principles of motor design and mechanism have now been derived, and an understanding of their complex cellular roles is emerging.
                Bookmark

                Author and article information

                Journal
                Journal of Non-Equilibrium Thermodynamics
                Walter de Gruyter GmbH
                1437-4358
                0340-0204
                April 26 2020
                April 26 2020
                : 45
                : 2
                : 191-207
                Affiliations
                [1 ]College of Power Engineering, 118388Naval University of Engineering, Wuhan430033, China
                [2 ]Institute of Thermal Science and Power Engineering, 34756Wuhan Institute of Technology, Wuhan430205, China
                [3 ]School of Mechanical & Electrical Engineering, 34756Wuhan Institute of Technology, Wuhan430205, China
                Article
                10.1515/jnet-2019-0102
                0b6c82f3-7f9e-4402-8924-620d193c6cf4
                © 2020
                History

                Comments

                Comment on this article