Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular systematics and ultrastructural characterization of a forgotten species: Chattonidium setense (Ciliophora, Heterotrichea)

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present paper we redescribe the ciliate Chattonidium setense Villeneuve 1937 combining morphological observations (live, stained, scanning, and transmission electron microscope) with behavioral notes and molecular data. Ultrastructural analysis revealed remarkable similarities between Chattonidium and representative members of the class Heterotrichea in cortical structure and cytoplasmic organization. The most similar genus for these aspects appears to be Condylostoma. To verify this relatedness, 18S rRNA genes from Chattonidium and from one Condylostoma species were sequenced. Phylogenetic analysis indicates Chattonidium belongs to the class Heterotrichea defined according to the modern taxonomy, and confirms its relatedness with Condylostoma already hypothesized by Villeneuve-Brachon (1940). The presence of the aboral cavity complex, a unique feature never described in other ciliates, and its peculiar organization revealed by ultrastructural analysis fully justify, in our opinion, the maintenance of Chattonidium in the separate family Chattonidiidae, established by Villeneuve-Brachon in 1940.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          The neighbor-joining method: a new method for reconstructing phylogenetic trees.

          A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

             Motoo Kimura (1980)
            Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ARB: a software environment for sequence data.

              The ARB (from Latin arbor, tree) project was initiated almost 10 years ago. The ARB program package comprises a variety of directly interacting software tools for sequence database maintenance and analysis which are controlled by a common graphical user interface. Although it was initially designed for ribosomal RNA data, it can be used for any nucleic and amino acid sequence data as well. A central database contains processed (aligned) primary structure data. Any additional descriptive data can be stored in database fields assigned to the individual sequences or linked via local or worldwide networks. A phylogenetic tree visualized in the main window can be used for data access and visualization. The package comprises additional tools for data import and export, sequence alignment, primary and secondary structure editing, profile and filter calculation, phylogenetic analyses, specific hybridization probe design and evaluation and other components for data analysis. Currently, the package is used by numerous working groups worldwide.
                Bookmark

                Author and article information

                Journal
                Proc Jpn Acad Ser B Phys Biol Sci
                Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci
                PJAB
                Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
                The Japan Academy
                0386-2208
                1349-2896
                December 2006
                12 February 2006
                : 82
                : 9
                : 359-374
                Affiliations
                Unità di Protistologia-Zoologia, Dipartimento di Biologia, Pisa, Italy
                82_359
                4338841
                © 2006 The Japan Academy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Articles

                Life sciences

                ultrastructure, protozoa, protist, heterotrichs, ssu rrna, molecular phylogeny

                Comments

                Comment on this article