+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emergence and Maintenance of Vector-Borne Diseases in the Khyber Pakhtunkhwa Province, and the Federally Administered Tribal Areas of Pakistan

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Human populations throughout much of the world are experiencing unprecedented changes in their relationship to the environment and their interactions with the animals with which so many humans are intimately dependent upon. These changes result not only from human induced changes in the climate, but also from population demographic changes due to wars, social unrest, behavioral changes resulting from cultural mixing, and large changes in land-use practices. Each of these social shifts can affect the maintenance and emergence of arthropod vectors disease or the pathogenic organisms themselves. A good example is the country of Pakistan, with a large rural population and developing urban economy, it also maintains a wide diversity of entomological disease vectors, including biting flies, mosquitoes, and ticks. Pathogens endemic to the region include the agents of piroplasmosis, rickettsiosis, spirochetosis, and viral hemorrhagic fevers and encephalitis. The northwestern region of the country, including the Khyber Pakhtunkhwa Province (KPK), formerly the North-West Frontier Provence (NWFP), and the Federally Administered Tribal Areas (FATA) are mountainous regions with a high degree of habitat diversity that has recently undergone a massive increase in human population density due to an immigrating refugee population from neighboring war-torn Afghanistan. Vector-borne diseases in people and livestock are common in KPK and FATA regions due to the limited use of vector control measures and access to livestock vaccines. The vast majority of people in this region live in abject poverty with >70% of the population living directly from production gained in animal husbandry. In many instances whole families live directly alongside their animal counterparts. In addition, there is little to no awareness of the threat posed by ticks and transmission of either zoonotic or veterinary pathogens. Recent emergence of Crimean–Congo hemorrhagic fever virus in rural populations, outbreaks of Dengue hemorrhagic fever have been reported in the region, and high prevalence of cattle infected and co-infected with multiple species of hemoparasites ( Theileria, Babesia, Anaplasma). The emergence of which has followed the increased density of the rural population due to an influx of refugees from violent conflicts in Afghanistan and is exacerbated by an already impoverished society and wide diversity of potential arthropod vectors. These human outbreaks may be exacerbated by episodes of social upheaval but are also tied to the historically close association of people in the region with their livestock and subsequent zoonosis that result from spillover from co-habitation with infected domestic animals.

          Related collections

          Most cited references 58

          • Record: found
          • Abstract: found
          • Article: not found

          Dengue and dengue hemorrhagic fever.

          Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to develop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever.
            • Record: found
            • Abstract: found
            • Article: found

            Global Spread and Persistence of Dengue

            Dengue is a spectrum of disease caused by four serotypes of the most prevalent arthropod-borne virus affecting humans today, and its incidence has increased dramatically in the past 50 years. Due in part to population growth and uncontrolled urbanization in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have proliferated, and successful vector control has proven problematic. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have expanded from South and Southeast Asia into the Pacific and the Americas. This review explores the human, mosquito, and viral factors that contribute to the global spread and persistence of dengue, as well as the interaction between the three spheres, in the context of ecological and climate changes. What is known, as well as gaps in knowledge, is emphasized in light of future prospects for control and prevention of this pandemic disease.
              • Record: found
              • Abstract: found
              • Article: not found

              Crimean-Congo haemorrhagic fever

              Summary Crimean-Congo haemorrhagic fever (CCHF) is an often fatal viral infection described in about 30 countries, and it has the most extensive geographic distribution of the medically important tickborne viral diseases, closely approximating the known global distribution of Hyalomma spp ticks. Human beings become infected through tick bites, by crushing infected ticks, after contact with a patient with CCHF during the acute phase of infection, or by contact with blood or tissues from viraemic livestock. Clinical features commonly show a dramatic progression characterised by haemorrhage, myalgia, and fever. The levels of liver enzymes, creatinine phosphokinase, and lactate dehydrogenase are raised, and bleeding markers are prolonged. Infection of the endothelium has a major pathogenic role. Besides direct infection of the endothelium, indirect damage by viral factors or virus-mediated host-derived soluble factors that cause endothelial activations and dysfunction are thought to occur. In diagnosis, enzyme-linked immunoassay and real-time reverse transcriptase PCR are used. Early diagnosis is critical for patient therapy and prevention of potential nosocomial infections. Supportive therapy is the most essential part of case management. Recent studies suggest that ribavirin is effective against CCHF, although definitive studies are not available. Health-care workers have a serious risk of infection, particularly during care of patients with haemorrhages from the nose, mouth, gums, vagina, and injection sites. Simple barrier precautions have been reported to be effective.

                Author and article information

                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Research Foundation
                09 July 2012
                : 3
                1simpleDepartment of Agriculture, Nutrition, and Veterinary Science, University of Nevada Reno, NV, USA
                2simpleVeterinary Research Institute, Khyber Pakhtunkhwa Province Peshawar, Pakistan
                Author notes

                Edited by: Rubén Bueno-Marí, University of Valencia, Spain

                Reviewed by: Sudhir Chowbina, Science Applications International Corporation-Frederick, USA; Hazrat Bilal, Health Services Academy, Pakistan

                *Correspondence: Nathan C. Nieto, Department of Agriculture, Nutrition, and Veterinary Science-MS 202, University of Nevada, Reno, 1664 North Virginia Avenue, Reno, NV 89557, USA. e-mail: nnieto@

                This article was submitted to Frontiers in Systems Biology, a specialty of Frontiers in Physiology.

                Copyright © 2012 Nieto, Khan, Uhllah and Teglas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 65, Pages: 7, Words: 7155
                Review Article


                Comment on this article