9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The increase in antibiotic resistance is a global concern for human and animal health. Resistant microorganisms can spread between food-producing animals and humans. The objective of this review was to identify the type and amount of antibiotics used in poultry production and the level of antibiotic resistance in Escherichia coli isolated from broilers. Isolate information was obtained from national monitoring programs and research studies conducted in large poultry-producing regions: US, China, Brazil, and countries of EU—Poland, United Kingdom, Germany, France, and Spain.

          The survey results clearly display the absence of a harmonized approach in the monitoring of antibiotics per animal species and the evaluation of resistances using the same methodology. There is no public long-term quantitative data available targeting the amount of antibiotics used in poultry, with the exception of France. Data on antibiotic-resistant E. coli are available for most regions but detection of resistance and number of isolates in each study differs among regions; therefore, statistical evaluation was not possible. Data from France indicate that the decreased use of tetracyclines leads to a reduction in the detected resistance rates. The fluoroquinolones, third-generation cephalosporins, macrolides, and polymyxins (“highest priority critically important” antibiotics for human medicine according to WHO) are approved for use in large poultry-producing regions, with the exception of fluoroquinolones in the US and cephalosporins in the EU. The approval of cephalosporins in China could not be evaluated. Tetracyclines, aminoglycosides, sulfonamides, and penicillins are registered for use in poultry in all evaluated countries. The average resistance rates in E. coli to representatives of these antibiotic classes are higher than 40% in all countries, with the exception of ampicillin in the US. The resistance rates to fluoroquinolones and quinolones in the US, where fluoroquinolones are not registered for use, are below 5%, while the average of resistant E. coli is above 40% in Brazil, China, and EU, where use of fluoroquinolones is legalized. However, banning of fluoroquinolones and quinolones has not totally eliminated the occurrence of resistant populations.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends.

          Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

            The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antimicrobial resistance: one world, one fight!

              The lack of new antibiotic classes calls for a cautious use of existing agents. Yet, every 10 min, almost two tons of antibiotics are used around the world, all too often without any prescription or control. The use, overuse and misuse of antibiotics select for resistance in numerous species of bacteria which then renders antimicrobial treatment ineffective. Almost all countries face increased antimicrobial resistance (AMR), not only in humans but also in livestock and along the food chain. The spread of AMR is fueled by growing human and animal populations, uncontrolled contamination of fresh water supplies, and increases in international travel, migration and trade. In this context of global concern, 68 international experts attending the fifth edition of the World HAI Resistance Forum in June 2015 shared their successes and failures in the global fight against AMR. They underlined the need for a “One Health” approach requiring research, surveillance, and interventions across human, veterinary, agricultural and environmental sectors. This strategy involves concerted actions on several fronts. Improved education and increased public awareness are a well-understood priority. Surveillance systems monitoring infections need to be expanded to include antimicrobial use, as well as the emergence and spread of AMR within clinical and environmental samples. Adherence to practices to prevent and control the spread of infections is mandatory to reduce the requirement of antimicrobials in general care and agriculture. Antibiotics need to be banned as growth promoters for farm animals in countries where it has not yet been done. Antimicrobial stewardship programmes in animal husbandry have proved to be efficient for minimising AMR, without compromising productivity. Regarding the use of antibiotics in humans, new tools to provide highly specific diagnoses of pathogens can decrease diagnostic uncertainty and improve clinical management. Finally, infection prevention and control measures – some of them as simple as hand hygiene – are essential and should be extended beyond healthcare settings. Aside from regulatory actions, all people can assist in AMR reduction by limiting antibiotic use for minor illnesses. Together, we can all work to reduce the burden of AMR.
                Bookmark

                Author and article information

                Journal
                Poult Sci
                Poult. Sci
                ps
                Poultry Science
                Poultry Science Association, Inc.
                0032-5791
                1525-3171
                April 2019
                13 December 2018
                13 December 2018
                : 98
                : 4
                : 1791-1804
                Affiliations
                [1 ]Department of Food Science and Technology, Institute of Food Science, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria
                [2 ]BIOMIN Holding GmbH, 3131 Getzersdorf, Austria
                [3 ]Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
                [4 ]Poultry Diagnostics and Research Center, University of Georgia, 30602 Athens, Georgia, USA
                Author notes
                Corresponding author: nataliya.roth@ 123456boku.ac.at
                Article
                pey539
                10.3382/ps/pey539
                6414035
                30544256
                0b881223-79f7-4103-bfd9-d38ecb341987
                © The Author(s) 2018. Published by Oxford University Press on behalf of Poultry Science Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com .

                History
                : 30 July 2018
                : 13 November 2018
                Page count
                Pages: 14
                Categories
                Microbiology and Food Safety

                antimicrobial,avian,e. coli,resistance,poultry
                antimicrobial, avian, e. coli, resistance, poultry

                Comments

                Comment on this article