20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lithium Ion Storage Characteristics of Mechanically Fractured Titanate Nanotubes

      , , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of mechanical milling on the formation of short titanate nanotube and structural change induced is investigated. Mechanical milling produces the short nanotubes with the length of 30–160 nm. The lithium ion intercalation characteristics of the obtained short titanate nanotube were studied to verify the effect of the newly formed cross-sections of nanotubes. It was found that the protonated titanate nanotubes maintained long shapes until 30 min of mechanical milling and were transformed into agglomerated nanosheets and finally anatase granules depending on the treatment duration. Through galvanostatic investigation, the nanotubes with milling of 15 min exhibited the highest discharge capacity of 336 mAh·g −1in first cycle, 12.4% larger than pristine.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis and characterization of ion-exchangeable titanate nanotubes.

          Titanate nanotubes were synthesized under hydrothermal conditions. The optimized synthesis (100-180 degrees C, longer than 48 h), thermal and hydrothermal stability, ion exchangeability and consequent magnetic and optical properties of the titanate nanotubes were systematically studied in this paper. First, nanotubes with monodisperse pore-size distribution were prepared. The formation mechanism of the titanate nanotubes was also studied. Second, the thermal and hydrothermal stability were characterized with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), and Raman spectroscopy. Results showed that sodium ions played a significant role in the stability of the frameworks. Third, the selective ion exchangeability was demonstrated with a series of ions. The ion substitution also enlarged the BET surface area of the titanate nanotubes to 240 m(2) x g(-1). Combination of these two features implied that these nanotubes might be functionalized by substitution of different transitional-metal ions and consequently used for selective catalysis. Magnetism, photoluminescence, and UV/Vis spectra of the substituted titanate nanotubes revealed that the magnetic and optical properties of the nanotubes were modifiable.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            TiO2-B Nanowires

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Trititanate Nanotubes Made via a Single Alkali Treatment

                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2012
                2012
                : 2012
                :
                : 1-8
                Article
                10.1155/2012/394089
                0b8c8a92-b906-413b-ad33-f10065372fdc
                © 2012

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article