19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TheCaenorhabditis elegans ing-3Gene Regulates Ionizing Radiation-Induced Germ-Cell Apoptosis in a p53-Associated Pathway

      , , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The inhibitor of growth (ING) family of type II tumor suppressors are encoded by five genes in mammals and by three genes in Caenorhabditis elegans. All ING proteins contain a highly conserved plant homeodomain (PHD) zinc finger. ING proteins are activated by stresses, including ionizing radiation, leading to the activation of p53. ING proteins in mammals and yeast have recently been shown to read the histone code in a methylation-sensitive manner to regulate gene expression. Here we identify and characterize ing-3, the C. elegans gene with the highest sequence identity to the human ING3 gene. ING-3 colocalizes with chromatin in embryos, the germline, and somatic cells. The ing-3 gene is part of an operon but is also transcribed from its own promoter. Both ing-3(RNAi) and ing-3 mutant strains demonstrate that the gene likely functions in concert with the C. elegans p53 homolog, cep-1, to induce germ-cell apoptosis in response to ionizing radiation. Somatically, the ing-3 mutant has a weak kinker uncoordinated (kinker Unc) phenotype, indicating a possible neuronal function.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          C. elegans: des neurones et des gènes

          The human brain contains 100 billion neurons and probably one thousand times more synapses. Such a system can be analyzed at different complexity levels, from cognitive functions to molecular structure of ion channels. However, it remains extremely difficult to establish links between these different levels. An alternative strategy relies on the use of much simpler animals that can be easily manipulated. In 1974, S. Brenner introduced the nematode Caenorhabditis elegans as a model system. This worm has a simple nervous system that only contains 302 neurons and about 7,000 synapses. Forward genetic screens are powerful tools to identify genes required for specific neuron functions and behaviors. Moreover, studies of mutant phenotypes can identify the function of a protein in the nervous system. The data that have been obtained in C. elegans demonstrate a fascinating conservation of the molecular and cellular biology of the neuron between worms and mammals through more than 550 million years of evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression.

            Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains--the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a-HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation.

              Members of the ING family of tumor suppressors regulate cell cycle progression, apoptosis, and DNA repair as important cofactors of p53. ING1 and ING3 are stable components of the mSin3A HDAC and Tip60/NuA4 HAT complexes, respectively. We now report the purification of the three remaining human ING proteins. While ING2 is in an HDAC complex similar to ING1, ING4 associates with the HBO1 HAT required for normal progression through S phase and the majority of histone H4 acetylation in vivo. ING5 fractionates with two distinct complexes containing HBO1 or nucleosomal H3-specific MOZ/MORF HATs. These ING5 HAT complexes interact with the MCM helicase and are essential for DNA replication to occur during S phase. Our data also indicate that ING subunits are crucial for acetylation of chromatin substrates. Since INGs, HBO1, and MOZ/MORF contribute to oncogenic transformation, the multisubunit assemblies characterized here underscore the critical role of epigenetic regulation in cancer development.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                February 19 2009
                February 2009
                February 2009
                November 17 2008
                : 181
                : 2
                : 473-482
                Article
                10.1534/genetics.107.080515
                2644941
                19015549
                0b8e0917-9893-4b72-87a8-8c5ca094757a
                © 2008
                History

                Comments

                Comment on this article