18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sequence-specific detection of DNA hybridization has attracted considerable interest in numerous fields. Although traditional DNA biosensors have been widely explored due to their high sensitivity, it is still challenging to develop a low-cost, portable, disposable, fast, and easy-to-use DNA detection method for public use at home or in the field. To address these challenges, herein, we report a novel microfluidic photoelectrochemical (PEC) paper-based analytical platform, integrated with an internal chemiluminescent light source, a novel paper supercapacitor (PS) amplifier, and a terminal digital multi-meter (DMM) detector, for sensitive DNA detection using a graphene-modified porous Au-paper electrode as the working electrode to obtain enhanced PEC responses. The quantification mechanism of this strategy is based on the charging of this PS, which was constructed on a paper-based analytical platform through a simple "drawing and soaking" method, by the generated photocurrent. After a fixed period, the PS was automatically shorted under the control of a novel built-in fluidic delay-switch to output an instantaneously amplified current, which could be sensitively detected by the DMM. At optimal conditions, this paper-based analytical platform can detect DNA at concentrations at femtomolar level. This approach also shows excellent specificity toward single nucleotide mismatches.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diagnostics for the developing world: microfluidic paper-based analytical devices.

            Microfluidic paper-based analytical devices (microPADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrochemical detection for paper-based microfluidics.

              We report the first demonstration of electrochemical detection for paper-based microfluidic devices. Photolithography was used to make microfluidic channels on filter paper, and screen-printing technology was used to fabricate electrodes on the paper-based microfluidic devices. Screen-printed electrodes on paper were characterized using cyclic voltammetry to demonstrate the basic electrochemical performance of the system. The utility of our devices was then demonstrated with the determination of glucose, lactate, and uric acid in biological samples using oxidase enzyme (glucose oxidase, lactate oxidase, and uricase, respectively) reactions. Oxidase enzyme reactions produce H2O2 while decomposing their respective substrates, and therefore a single electrode type is needed for detection of multiple species. Selectivity of the working electrode for H2O2 was improved using Prussian Blue as a redox mediator. The determination of glucose, lactate, and uric acid in control serum samples was performed using chronoamperometry at the optimal detection potential for H2O2 (0 V versus the on-chip Ag/AgCl reference electrode). Levels of glucose and lactate in control serum samples measured using the paper devices were 4.9 +/- 0.6 and 1.2 +/- 0.2 mM (level I control sample), and 16.3 +/- 0.7 and 3.2 +/- 0.3 mM (level II control sample), respectively, and were within error of the values measured using traditional tests. This study shows the successful integration of paper-based microfluidics and electrochemical detection as an easy-to-use, inexpensive, and portable alternative for point of care monitoring.
                Bookmark

                Author and article information

                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                2013
                2013
                : 13
                : 19
                : 3945
                Article
                10.1039/c3lc50430a
                23954934
                0b97d8bc-6f8f-4755-b264-a700939f5ac5
                © 2013
                History

                Comments

                Comment on this article