7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Efficacious rat model displays non-toxic effect with Korean beechwood creosote: a possible antibiotic substitute

      Biotechnology, biotechnological equipment
      Taylor & Francis
      antibiotic substitute, korean beechwood creosote, hepatotoxic markers

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wood creosote, an herbal anti-diarrheal and a mixture of major volatile compounds, was tested for its non-toxicological effects, using a rat model, with the objective to use the creosote as an antibiotic substitute. A total of 30 Sprague-Dawley rats were studied to form five groups with 6 rats each. Korea beechwood creosote was supplemented into three test groups with 0.03 g/kg, 0.07 g/kg and 0.1 g/kg body weight/day without antibiotic support, along with a positive control of Apramycin sulphate (at 0.5% of the daily feed) and a negative control. Korean beechwood creosote supplementation showed no negative effect on the body weight gain in comparison to the negative and the positive control groups and the feed conversion ratio was also comparable with that of the control groups. The clinical pathology parameters studied were also under the umbrella of normal range, including liver specific enzymes, blood glucose, total protein, blood urea nitrogen (BUN), which indicated no toxic effect of creosote at the given doses. The non-hepatotoxic effect was also confirmed using hepatic damage specific molecular markers like Tim-p1, Tim-p2 and Tgf-β1. The results suggested that Korean beechwood may be used as antibiotic substitute in weanling pigs feed without any toxic effect on the body. Although the antimicrobial properties of creosote were not absolutely similar to those of apramycin sulphate, they were comparable.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: not found
          • Article: not found

          Histological grading and staging of chronic hepatitis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon.

            Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cirrhosis: new research provides a basis for rational and targeted treatments.

              J Iredale (2003)
                Bookmark

                Author and article information

                Journal
                26019530
                4433953
                10.1080/13102818.2014.931696
                http://creativecommons.org/licenses/by/3.0

                antibiotic substitute,korean beechwood creosote,hepatotoxic markers

                Comments

                Comment on this article