8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites

      , , , , , ,
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Metal-organic frameworks in biomedicine.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences.

            This critical review focuses on a strange behaviour of crystallized solid matter: its reversible swelling with large magnitude. This will be of interest for experts in porous solids but also for solid state chemists and physicists. Some examples, classified according to the dimensionality of the inorganic subnetwork, present the general requirements and the structural rules which govern the existence of this phenomenon. Its consequences concern specific applications related to sensors, energy savings, sustainable development and health (100 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced surface: an efficient way to compute molecular surfaces.

              Because of their wide use in molecular modeling, methods to compute molecular surfaces have received a lot of interest in recent years. However, most of the proposed algorithms compute the analytical representation of only the solvent-accessible surface. There are a few programs that compute the analytical representation of the solvent-excluded surface, but they often have problems handling singular cases of self-intersecting surfaces and tend to fail on large molecules (more than 10,000 atoms). We describe here a program called MSMS, which is shown to be fast and reliable in computing molecular surfaces. It relies on the use of the reduced surface that is briefly defined here and from which the solvent-accessible and solvent-excluded surfaces are computed. The four algorithms composing MSMS are described and their complexity is analyzed. Special attention is given to the handling of self-intersecting parts of the solvent-excluded surface called singularities. The program has been compared with Connolly's program PQMS [M.L. Connolly (1993) Journal of Molecular Graphics, Vol. 11, pp. 139-141] on a set of 709 molecules taken from the Brookhaven Data Base. MSMS was able to compute topologically correct surfaces for each molecule in the set. Moreover, the actual time spent to compute surfaces is in agreement with the theoretical complexity of the program, which is shown to be O[n log(n)] for n atoms. On a Hewlett-Packard 9000/735 workstation, MSMS takes 0.73 s to produce a triangulated solvent-excluded surface for crambin (1 crn, 46 residues, 327 atoms, 4772 triangles), 4.6 s for thermolysin (3tln, 316 residues, 2437 atoms, 26462 triangles), and 104.53 s for glutamine synthetase (2gls, 5676 residues, 43632 atoms, 476665 triangles).
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                September 01 2015
                September 01 2015
                : 54
                : 36
                : 10454-10459
                Article
                10.1002/anie.201502045
                0ba1495c-97d5-463e-b3d8-42a4fc343378
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article