23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Antibody-Dependent Enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS

      abstract
      1 , , 2 , 1 , 1 , 1 , 2 , 1
      BMC Proceedings
      BioMed Central
      Institut Pasteur International Network Annual Scientific Meeting
      22–23 November 2010

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibody-dependent enhancement (ADE) is a mechanism by which viruses, such as dengue, HIV and Ebola, gain entry into some target cells through the use of host antiviral humoral immune responses [1]. Here, we studied the ability of severe acute respiratory syndrome coronavirus (SARS-CoV) [2] to use ADE mechanisms to enhance its infectivity towards cells of the hematopoietic lineage. We found that heat-inactivated immune serum from rodents vaccinated with recombinant native full-length Spike protein trimers [3] triggered infection of human immune cells (monocytic and B cell lines) by SARS-CoV Spike pseudotyped particle (SARS-CoVpp). The occurrence of antibody-mediated infection of human Raji B cells was further investigated by using live SARS-CoV. Similarly to results obtained with the SARS-CoVpp, only anti-SARS-CoV Spike serum, but not mock immune-serum, induced a massive increase of SARS-CoV viral genes (ORF1b and Nucleocapsid) and viral proteins (Membrane and Nucleocapsid) in Raji B cells. As revealed by immunostaining, only a relatively low, however significant percentage of the Raji cells get infected by antibody-mediated infection and did not allow direct assessment of productive replication by conventional cytopathic assays and TCID50 titration. Taken together, our data suggested that SARS-CoV is able to enter human immune cells via an antibody-mediated pathway and immunological consequences of such infection are under investigation (productive replication, cytokines secretion profile and cell death etc). Our data raise reasonable concerns regarding the use of SARS-CoV vaccine in humans and pave the way to further studies focusing on the role of immune-mediated infection phenomenon during SARS pathogenesis.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          The spike protein of SARS-CoV — a target for vaccine and therapeutic development

          Key Points This Review provides an overview on the spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) as a target for the development of vaccines and therapeutics for the prevention and treatment of SARS. SARS is a newly emerging infectious disease, caused by SARS-CoV, a novel coronavirus that caused a global outbreak of SARS. SARS-CoV S protein mediates binding of the virus with its receptor angiotensin-converting enzyme 2 and promotes the fusion between the viral and host cell membranes and virus entry into the host cell. SARS-CoV S protein induces humoral and cellular immune responses against SARS-CoV. SARS S protein is the target of new SARS vaccines. These vaccines are based on SARS-CoV full-length S protein and its receptor-binding domain, including DNA-, viral vector- and subunit-based vaccines Peptides, antibodies, organic compounds and short interfering RNAs are additional anti-SARS-CoV therapeutics that target the S protein. The work on SARS-CoV S protein-based vaccines and drugs will be useful as a model for the development of prophylactic strategies and therapies against other viruses with class I fusion proteins that can cause emerging infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro

            Vaccine-induced antibodies can prevent or, in the case of feline infectious peritonitis virus, aggravate infections by coronaviruses. We investigated whether a recombinant native full-length S-protein trimer (triSpike) of severe acute respiratory syndrome coronavirus (SARS-CoV) was able to elicit a neutralizing and protective immune response in animals and analyzed the capacity of anti-S antibodies to mediate antibody-dependent enhancement (ADE) of virus entry in vitro and enhancement of replication in vivo. SARS-CoV-specific serum and mucosal immunoglobulins were readily detected in immunized animals. Serum IgG blocked binding of the S-protein to the ACE2 receptor and neutralized SARS-CoV infection in vitro. Entry into human B cell lines occurred in a FcγRII-dependent and ACE2-independent fashion indicating that ADE of virus entry is a novel cell entry mechanism of SARS-CoV. Vaccinated animals showed no signs of enhanced lung pathology or hepatitis and viral load was undetectable or greatly reduced in lungs following challenge with SARS-CoV. Altogether our results indicate that a recombinant trimeric S protein was able to elicit an efficacious protective immune response in vivo and warrant concern in the safety evaluation of a human vaccine against SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications.

              Besides the common receptor/coreceptor-dependent mechanism of cellular attachment, some viruses rely on antiviral antibodies for their efficient entry into target cells. This mechanism, known as antibody-dependent enhancement (ADE) of viral infection, depends on the cross-linking of complexes of virus-antibody or virus-activated complement components through interaction with cellular molecules such as Fc receptors or complement receptors, leading to enhanced infection of susceptible cells. Recent studies have suggested that additional mechanisms underlie ADE: involvement of complement component C1q and its receptor (Ebola virus), antibody-mediated modulation of the interaction between viral protein and its coreceptor (human immunodeficiency virus) and suppression of cellular antiviral genes by the replication of viruses entering cells via ADE (Ross River virus). Since ADE is exploited by a variety of viruses and has been associated with disease exacerbation, it may have broad relevance to the pathogenesis of viral infection and antiviral strategies. Copyright 2003 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Conference
                BMC Proc
                BMC Proceedings
                BioMed Central
                1753-6561
                2011
                10 January 2011
                : 5
                : Suppl 1
                : P80
                Affiliations
                [1 ]HKU-Pasteur Research Centre, Hong Kong, Hong Kong SAR
                [2 ]Department of Microbiology, The University of Hong Kong, Hong Kong SAR
                Article
                1753-6561-5-S1-P80
                3019510
                0ba8a416-ed63-4a25-abc6-9d7a7a2d1fd9
                Copyright ©2011 Yip et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Institut Pasteur International Network Annual Scientific Meeting
                Hong Kong
                22–23 November 2010
                History
                Categories
                Poster Presentation

                Medicine
                Medicine

                Comments

                Comment on this article