41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors.

          Methods

          We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells.

          Results

          MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells.

          Conclusions

          Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review.

          In this exploratory, hypothesis-generating literature review, we evaluated potentially differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and non-HDL-C in published studies of ω-3 fatty acid supplementation or prescription ω-3 fatty acid ethyl esters. Placebo-adjusted changes in mean lipid parameters were compared in randomized, controlled trials in subjects treated for ≥ 4 weeks with DHA or EPA. Of 22 studies identified, 6 compared DHA with EPA directly, 12 studied DHA alone (including 14 DHA-treated groups), and 4 examined EPA alone. In studies directly comparing EPA with DHA, a net increase in LDL-C of 3.3% was observed with DHA (DHA: +2.6%; EPA: -0.7%). In such head-to-head comparative studies, DHA treatment was associated with a net decrease in TG by 6.8% (DHA: -22.4%; EPA: -15.6%); a net increase in non-HDL-C by 1.7% (DHA: -1.2%; EPA -2.9%); and a net increase in HDL-C by 5.9% (DHA: +7.3%; EPA: +1.4%). Increases in LDL-C were also observed in 71% of DHA-alone groups [with demonstrated statistical significance (P < .05) in 67% (8 of 12) DHA-alone studies] but not in any EPA-alone studies. Changes in LDL-C significantly correlated with baseline TG for DHA-treated groups. The range of HDL-C increases documented in DHA-alone vs EPA-alone studies further supports the fact that HDL-C is increased more substantially by DHA than EPA. In total, these findings suggest that DHA-containing supplements or therapies were associated with more significant increases in LDL-C and HDL-C than were EPA-containing supplements or therapies. Future prospective, randomized trials are warranted to confirm these preliminary findings, determine the potential effects of these fatty acids on other clinical outcomes, and evaluate the generalizability of the data to larger and more heterogeneous patient populations. Copyright © 2012 National Lipid Association. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8.

            Accumulation of sterols in membranes of the endoplasmic reticulum (ER) leads to the accelerated ubiquitination and proteasomal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This degradation results from sterol-induced binding of reductase to the Insig-1 or Insig-2 proteins of ER membranes. We previously reported that in immortalized human fibroblasts (SV-589 cells) Insig-1, but not Insig-2, recruits gp78, a membrane-bound RING-finger ubiquitin ligase. We now report that both Insig-1 and Insig-2 bind another membrane-bound RING-finger ubiquitin ligase called Trc8. Knockdown of either gp78 or Trc8 in SV-589 cells through RNA interference (RNAi) inhibited sterol-induced ubiquitination of reductase and inhibited sterol-induced degradation by 50-60%. The combined knockdown of gp78 and Trc8 produced a more complete inhibition of degradation (> 90%). Knockdown of gp78 led to a three to fourfold increase in levels of Trc8 and Insig-1 proteins, which opposed the inhibitory action of gp78. In contrast, knockdown of Trc8 had no effect on gp78 or Insig-1. The current results suggest that sterol-induced ubiquitination and proteasomal degradation of reductase is dictated by the complex interplay of at least four proteins: Insig-1, Insig-2, gp78, and Trc8. Variations in the concentrations of any one of these proteins may account for differences in cell- and/or tissue-specific regulation of reductase degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial

              Background: Breast cancer becomes lethal when visceral metastases develop. At this stage, anti-cancer treatments aim at relieving symptoms and delaying death without resulting in additional toxicity. On the basis of their differential anti-oxidant defence level, tumour cells can be made more sensitive to chemotherapy than non-tumour cells when membrane lipids are enriched with docosahexaenoic acid (DHA), a peroxidisable and oxidative-stress-inducing lipid of marine origin. Methods: This open-label single-arm phase II study evaluated the safety and efficacy (response rate), as primary end points, of the addition of 1.8 g DHA daily to an anthracycline-based chemotherapy (FEC) regimen in breast cancer patients (n=25) with rapidly progressing visceral metastases. The secondary end points were time to progression (TTP) and overall survival (OS). Results: The objective response rate was 44%. With a mean follow-up time of 31 months (range 2–96 months), the median TTP was 6 months. Median OS was 22 months and reached 34 months in the sub-population of patients (n=12) with the highest plasma DHA incorporation. The most common grade 3 or 4 toxicity was neutropaenia (80%). Conclusion: DHA during chemotherapy was devoid of adverse side effects and can improve the outcome of chemotherapy when highly incorporated. DHA has a potential to specifically chemosensitise tumours.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2013
                13 November 2013
                : 12
                : 137
                Affiliations
                [1 ]Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
                [2 ]Department of Pharmacological and Biomolecular Sciences, University of Milano, via Trentacoste 2, 20134 Milan, Italy
                [3 ]Center for Experimental Research and Medical Studies, University of Torino, via Santena 5/bis, 10126 Torino, Italy
                Article
                1476-4598-12-137
                10.1186/1476-4598-12-137
                4225767
                24225025
                0bb94049-df52-42dc-b541-69040b6949e0
                Copyright © 2013 Gelsomino et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 August 2013
                : 11 November 2013
                Categories
                Research

                Oncology & Radiotherapy
                omega 3 polyunsaturated fatty acids,cholesterol,detergent resistant membranes,multidrug resistance,atp binding cassette transporters

                Comments

                Comment on this article