Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbial community analysis of a full-scale DEMON bioreactor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial diversity in the deep sea and the underexplored "rare biosphere".

          The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This "rare biosphere" is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earth's history, may have had a profound impact on shaping planetary processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)

            Background The microbiota of an animal's intestinal tract plays important roles in the animal's overall health, productivity and well-being. There is still a scarcity of information on the microbial diversity in the gut of livestock species such as cattle. The primary reason for this lack of data relates to the expense of methods needed to generate such data. Here we have utilized a bacterial tag-encoded FLX 16s rDNA amplicon pyrosequencing (bTEFAP) approach that is able to perform diversity analyses of gastrointestinal populations. bTEFAP is relatively inexpensive in terms of both time and labor due to the implementation of a novel tag priming method and an efficient bioinformatics pipeline. We have evaluated the microbiome from the feces of 20 commercial, lactating dairy cows. Results Ubiquitous bacteria detected from the cattle feces included Clostridium, Bacteroides, Porpyhyromonas, Ruminococcus, Alistipes, Lachnospiraceae, Prevotella, Lachnospira, Enterococcus, Oscillospira, Cytophage, Anaerotruncus, and Acidaminococcus spp. Foodborne pathogenic bacteria were detected in several of the cattle, a total of 4 cows were found to be positive for Salmonella spp (tentative enterica) and 6 cows were positive for Campylobacter spp. (tentative lanienae). Conclusion Using bTEFAP we have examined the microbiota in the feces of cattle. As these methods continue to mature we will better understand the ecology of the major populations of bacteria the lower intestinal tract. This in turn will allow for a better understanding of ways in which the intestinal microbiome contributes to animal health, productivity and wellbeing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

              Background Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types: diabetic foot ulcers (D), venous leg ulcers (V), and pressure ulcers (P). Results There are specific major populations of bacteria that were evident in the biofilms of all chronic wound types, including Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia spp. Each of the wound types reveals marked differences in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as obligate anaerobes. There were also populations of bacteria that were identified but not recognized as wound pathogens, such as Abiotrophia para-adiacens and Rhodopseudomonas spp. Results of molecular analyses were also compared to those obtained using traditional culture-based diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial population indicating the need for improved diagnostic methods. Conclusion If clinicians can gain a better understanding of the wound's microbiota, it will give them a greater understanding of the wound's ecology and will allow them to better manage healing of the wound improving the prognosis of patients. This research highlights the necessity to begin evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in order to improve the outcomes of patients. This survey will also foster the pioneering and development of new molecular diagnostic tools, which can be used to identify the community compositions of chronic wound pathogenic biofilms and other medical biofilm infections.
                Bookmark

                Author and article information

                Journal
                Bioprocess and Biosystems Engineering
                Bioprocess Biosyst Eng
                Springer Nature
                1615-7591
                1615-7605
                March 2015
                September 23 2014
                : 38
                : 3
                : 499-508
                Article
                10.1007/s00449-014-1289-z
                25245398
                © 2014
                Product

                Comments

                Comment on this article