16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity

      research-article
      , , ,
      Scientific Reports
      Nature Publishing Group UK
      Neuroscience, Pain

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Limited evidence has suggested that terpenes found in Cannabis sativa are analgesic, and could produce an “entourage effect” whereby they modulate cannabinoids to result in improved outcomes. However this hypothesis is controversial, with limited evidence. We thus investigated Cannabis sativa terpenes alone and with the cannabinoid agonist WIN55,212 using in vitro and in vivo approaches. We found that the terpenes α-humulene, geraniol, linalool, and β-pinene produced cannabinoid tetrad behaviors in mice, suggesting cannabimimetic activity. Some behaviors could be blocked by cannabinoid or adenosine receptor antagonists, suggesting a mixed mechanism of action. These behavioral effects were selectively additive with WIN55,212, suggesting terpenes can boost cannabinoid activity. In vitro experiments showed that all terpenes activated the CB1R, while some activated other targets. Our findings suggest that these Cannabis terpenes are multifunctional cannabimimetic ligands that provide conceptual support for the entourage effect hypothesis and could be used to enhance the therapeutic properties of cannabinoids.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor.

            Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polypharmacology: challenges and opportunities in drug discovery.

              At present, the legendary magic bullet, i.e., a drug with high potency and selectivity toward a specific biological target, shares the spotlight with an emerging and alternative polypharmacology approach. Polypharmacology suggests that more effective drugs can be developed by specifically modulating multiple targets. It is generally thought that complex diseases such as cancer and central nervous system diseases may require complex therapeutic approaches. In this respect, a drug that "hits" multiple sensitive nodes belonging to a network of interacting targets offers the potential for higher efficacy and may limit drawbacks generally arising from the use of a single-target drug or a combination of multiple drugs. In this review, we will compare advantages and disadvantages of multitarget versus combination therapies, discuss potential drug promiscuity arising from off-target effects, comment on drug repurposing, and introduce approaches to the computational design of multitarget drugs.
                Bookmark

                Author and article information

                Contributors
                jstreicher@arizona.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 April 2021
                15 April 2021
                2021
                : 11
                : 8232
                Affiliations
                GRID grid.134563.6, ISNI 0000 0001 2168 186X, Department of Pharmacology, College of Medicine, , University of Arizona, ; Tucson, AZ USA
                Author information
                https://orcid.org/0000-0001-7653-0823
                https://orcid.org/0000-0003-4189-6950
                https://orcid.org/0000-0001-5028-8688
                https://orcid.org/0000-0002-4173-7362
                Article
                87740
                10.1038/s41598-021-87740-8
                8050080
                33859287
                0bc0158c-366c-4da6-97da-9df237702163
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 December 2020
                : 31 March 2021
                Funding
                Funded by: University of Arizona Institutional Funds
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuroscience,pain
                Uncategorized
                neuroscience, pain

                Comments

                Comment on this article