65
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potent Inhibition of Cicatricial Contraction in Proliferative Vitreoretinal Diseases by Statins

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—Despite tremendous progress in vitreoretinal surgery, certain postsurgical complications limit the success in the treatment of proliferative vitreoretinal diseases (PVDs), such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). One of the most significant complications is the cicatricial contraction of proliferative membranes, resulting in tractional retinal detachment and severe vision loss. Novel pharmaceutical approaches are thus urgently needed for the management of these vision-threatening diseases. In the current study, we investigated the inhibitory effects of statins on the progression of PVDs.

          RESEARCH DESIGN AND METHODS—Human vitreous concentrations of transforming growth factor-β2 (TGF-β2) were measured by enzyme-linked immunosorbent assay. TGF-β2–and vitreous-dependent phosphorylation of myosin light chain (MLC), a downstream mediator of Rho-kinase pathway, and collagen gel contraction simulating cicatrical contraction were analyzed using cultured hyalocytes. Inhibitory effects of simvastatin on cicatrical contraction were assessed both in vitro and in vivo.

          RESULTS—Human vitreous concentrations of TGF-β2 were significantly higher in the samples from patients with PVD compared with those without PVD. Simvastatin inhibited TGF-β2–dependent MLC phosphorylation and gel contraction in a dose- and time-dependent manner and was capable of inhibiting translocation of Rho protein to the plasma membrane in the presence of TGF-β2. Vitreous samples from patients with PVD enhanced MLC phosphorylation and gel contraction, whereas simvastatin almost completely inhibited these phenomena. Finally, intravitreal injection of simvastatin dose-dependently prevented the progression of diseased states in an in vivo model of PVR.

          CONCLUSIONS—Statins might have therapeutic potential in the prevention of PVDs.

          Related collections

          Most cited references 65

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase.

             U Laufs,  J. Liao (1998)
            The mechanism by which 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors increase endothelial nitric oxide synthase (eNOS) expression is unknown. To determine whether changes in isoprenoid synthesis affects eNOS expression, human endothelial cells were treated with the HMG-CoA reductase inhibitor, mevastatin (1-10 microM), in the presence of L-mevalonate (200 microM), geranylgeranylpyrophosphate (GGPP, 1-10 microM), farnesylpyrophosphate (FPP, 5-10 microM), or low density lipoprotein (LDL, 1 mg/ml). Mevastatin increased eNOS mRNA and protein levels by 305 +/- 15% and 180 +/- 11%, respectively. Co-treatment with L-mevalonate or GGPP, but not FPP or LDL, reversed mevastatin's effects. Because Rho GTPases undergo geranylgeranyl modification, we investigated whether Rho regulates eNOS expression. Immunoblot analyses and [35S]GTPgammaS-binding assays revealed that mevastatin inhibited Rho membrane translocation and GTP binding activity by 60 +/- 5% and 78 +/- 6%, both of which were reversed by co-treatment with GGPP but not FPP. Furthermore, inhibition of Rho by Clostridium botulinum C3 transferase (50 microg/ml) or by overexpression of a dominant-negative N19RhoA mutant increased eNOS expression. In contrast, activation of Rho by Escherichia coli cytotoxic necrotizing factor-1 (200 ng/ml) decreased eNOS expression. These findings indicate that Rho negatively regulates eNOS expression and that HMG-CoA reductase inhibitors up-regulate eNOS expression by blocking Rho geranylgeranylation, which is necessary for its membrane-associated activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proliferative vitreoretinopathy: risk factors and pathobiology.

              Proliferative vitreoretinopathy (PVR) is still a major cause of failure of retinal detachment surgery. Despite a dramatic increase in our pathobiologic knowledge of PVR during the last 10 years, little of this information has been used to modify the surgical management of the disease, and, thus, the anatomic and functional results are still unsatisfactory. Collaborative research involving clinicians and basic researchers must be encouraged. PVR must be considered a multifactorial disease caused by interaction of several cells and intra- and extraocular factors. Therefore, therapeutic options based on the inhibition of one factor or phenomenon may be regarded with scepticism. To prevent PVR, it is necessary to determine the factors involved in its development, and because of its relatively small prevalence, large, prospective, multicenter studies seem necessary. In addition, clinical research must not be underestimated. PVR affects both sides of the retina and the retina itself, a point to which little attention has been paid and that is critical for surgical results. Therefore, a new classification that provides information about clinical relevance, such as the evolutionary stages of the disease (biologic activity) and the degree of surgical difficulty (location of the fibrotic process), seems necessary.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                October 2008
                : 57
                : 10
                : 2784-2793
                Affiliations
                [1 ]Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
                [2 ]Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
                [3 ]Aqumen Biopharmaceuticals, Tenjin, Chuo-Ku, Fukuoka, Japan
                [4 ]Department of Occupational Therapy, Faculty of Rehabilitation, International University of Health and Welfare at Okawa, Enokizu, Okawa, Fukuoka, Japan
                Author notes

                Corresponding author: Yasuaki Hata, hatachan@ 123456med.kyushu-u.ac.jp

                Article
                57102784
                10.2337/db08-0302
                2551690
                18599521
                Copyright © 2008, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                Product
                Categories
                Complications

                Endocrinology & Diabetes

                Comments

                Comment on this article