7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Close-in planetesimal formation by pile-up of drifting pebbles

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The consistency of planet formation models suffers from the disconnection between the regime of small and large bodies. This is primarily caused by so-called growth barriers: the direct growth of larger bodies is halted at centimetre-sized objects and particular conditions are required for the formation of larger, gravitationally bound planetesimals. We aim to connect models of dust evolution and planetesimal formation to identify regions of protoplanetary discs that are favourable for the formation of kilometre-sized bodies and the first planetary embryos. We combine semi-analytical models of viscous protoplanetary disc evolution, dust growth and drift including backreaction of the dust particles on the gas, and planetesimal formation via the streaming instability into one numerical code. We investigate how planetesimal formation is affected by the mass of the protoplanetary disc, its initial dust content, and the stickiness of dust aggregates. We find that the dust growth and drift leads to a global redistribution of solids. The pile-up of pebbles in the inner disc provides local conditions where the streaming instability is effective. Planetesimals form in an annulus with its inner edge lying between 0.3 AU and 1 AU and its width ranging from 0.3 AU to 3 AU. The resulting surface density of planetesimals follows a radial profile that is much steeper than the initial disc profile. These results support formation of terrestrial planets in the solar system from a narrow annulus of planetesimals, which reproduces their peculiar mass ratios.

          Related collections

          Author and article information

          Journal
          2016-07-19
          2016-09-05
          Article
          10.1051/0004-6361/201628983
          1607.05734
          0beb80f6-f4e3-45ac-9c38-c4a3d05657d5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          11 pages, 7 figures, 2 tables, accepted for publication in Astronomy & Astrophysics, updated to match the published version
          astro-ph.EP

          Planetary astrophysics
          Planetary astrophysics

          Comments

          Comment on this article