71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATP as a biological hydrotrope.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrotropes are small molecules that solubilize hydrophobic molecules in aqueous solutions. Typically, hydrotropes are amphiphilic molecules and differ from classical surfactants in that they have low cooperativity of aggregation and work at molar concentrations. Here, we show that adenosine triphosphate (ATP) has properties of a biological hydrotrope. It can both prevent the formation of and dissolve previously formed protein aggregates. This chemical property is manifested at physiological concentrations between 5 and 10 millimolar. Therefore, in addition to being an energy source for biological reactions, for which micromolar concentrations are sufficient, we propose that millimolar concentrations of ATP may act to keep proteins soluble. This may in part explain why ATP is maintained in such high concentrations in cells.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Induced ncRNAs Allosterically Modify RNA Binding Proteins in cis to Inhibit Transcription

          With the recent recognition of non-coding RNAs (ncRNAs) flanking many genes1-5, a central issue is to fully understand their potential roles in regulated gene transcription programs, possibly through different mechanisms6-12. Here, we report that an RNA-binding protein, TLS, serves as a key transcriptional regulatory sensor of DNA damage signals that, based on its allosteric modulation by RNA, specifically binds to and inhibits CBP/p300 HAT activities on a repressed gene target, cyclin D1 (CCND1). Recruitment of TLS to the CCND1 promoter to cause gene-specific repression is directed by single stranded, low copy number ncRNA transcripts tethered to the 5′ regulatory regions of CCND1 that are induced in response to DNA damage signals. Our data suggest that signal-induced ncRNAs localized to regulatory regions of transcription units can act cooperatively as selective ligands, recruiting and modulating the activities of distinct classes of RNA binding co-regulators in response to specific signals, providing an unexpected ncRNA/RNA-binding protein-based strategy to integrate transcriptional programs.
            • Record: found
            • Abstract: found
            • Article: not found

            Living with water stress: evolution of osmolyte systems

            Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals. Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria. The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions. Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions.
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity.

              The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components. Copyright © 2014 Elsevier Inc. All rights reserved.

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                American Association for the Advancement of Science (AAAS)
                1095-9203
                0036-8075
                May 19 2017
                : 356
                : 6339
                Affiliations
                [1 ] Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
                [2 ] Department of Chemistry and Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL 60637, USA. yamuna@uchicago.edu hyman@mpi-cbg.de.
                [3 ] Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany. yamuna@uchicago.edu hyman@mpi-cbg.de.
                Article
                356/6339/753
                10.1126/science.aaf6846
                28522535
                0bfdaff0-5490-4d8e-9027-2ff413220355
                History

                Comments

                Comment on this article

                Related Documents Log