4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The AHR Signaling Attenuates Autoimmune Responses During the Development of Type 1 Diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aryl hydrocarbon receptor (AHR) is a ligand-activated transcriptional factor widely expressed in immune cells. Its ligands range from xenobiotics and natural substances to metabolites, which renders it capable of sensing and responding to a variety of environmental cues. Although AHR signaling has long been recognized to be implicated in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis (RA), colitis, and systemic lupus erythematosus (SLE), its effect on the pathogenesis of type 1 diabetes (T1D) remains less understood. In this review, we intend to summarize its potential implication in T1D pathogenesis and to sort out the related regulatory mechanisms in different types of immune cells. Emerging evidence supports that β cell destruction caused by autoimmune responses can be rectified by AHR signaling. Upon activation by its ligands, AHR not only modulates the development and functionality of immune cells, but also suppresses the expression of inflammatory cytokines, through which AHR attenuates autoimmune responses during the course of T1D development. Since AHR-initiated biological effects vary between different types of ligands, additional studies would be necessary to characterize or de novo synthesize effective and safe ligands aimed to replenish our arsenal in fighting autoimmune responses and β mass loss in a T1D setting.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles.

          Innate lymphoid cells (ILC) expressing the transcription factor RORγt induce the postnatal formation of intestinal lymphoid follicles and regulate intestinal homeostasis. RORγt(+) ILC express the aryl hydrocarbon receptor (AhR), a highly conserved, ligand-inducible transcription factor believed to control adaptation of multicellular organisms to environmental challenges. We show that AhR is required for the postnatal expansion of intestinal RORγt(+) ILC and the formation of intestinal lymphoid follicles. AhR activity within RORγt(+) ILC could be induced by dietary ligands such as those contained in vegetables of the family Brassicaceae. AhR-deficient mice were highly susceptible to infection with Citrobacter rodentium, a mouse model for attaching and effacing infections. Our results establish a molecular link between nutrients and the formation of immune system components required to maintain intestinal homeostasis and resistance to infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse.

            Increasing evidence suggests that environmental factors changing the normal colonisation pattern in the gut strongly influence the risk of developing autoimmune diabetes. The aim of this study was to investigate, both during infancy and adulthood, whether treatment with vancomycin, a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group received vancomycin from 8 weeks of age until onset of diabetes. Pyrosequencing of the gut microbiota and flow cytometry of intestinal immune cells was used to investigate the effect of vancomycin treatment. At the end of the study, the cumulative diabetes incidence was found to be significantly lower for the neonatally treated group compared with the untreated group, whereas the insulitis score and blood glucose levels were significantly lower for the mice treated as adults compared with the other groups. Mucosal inflammation was investigated by intracellular cytokine staining of the small intestinal lymphocytes, which displayed an increase in cluster of differentiation (CD)4(+) T cells producing pro-inflammatory cytokines in the neonatally treated mice. Furthermore, bacteriological examination of the gut microbiota composition by pyrosequencing revealed that vancomycin depleted many major genera of Gram-positive and Gram-negative microbes while, interestingly, one single species, Akkermansia muciniphila, became dominant. The early postnatal period is a critical time for microbial protection from type 1 diabetes and it is suggested that the mucolytic bacterium A. muciniphila plays a protective role in autoimmune diabetes development, particularly during infancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.

              Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4(+) T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                07 August 2020
                2020
                : 11
                : 1510
                Affiliations
                Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
                Author notes

                Edited by: Myung-Shik Lee, Yonsei University Health System, South Korea

                Reviewed by: Thomas William Kay, The University of Melbourne, Australia; Li Wen, Yale School of Medicine, United States

                *Correspondence: Qilin Yu, flyfish007@ 123456126.com

                These authors have contributed equally to this work

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.01510
                7426364
                32849515
                0bfdd496-b42f-4fb9-9d83-c5d49803d8b1
                Copyright © 2020 Yue, Sun, Yang, Wang, Luo, Yang, Xiong, Zhang, Yu and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 March 2020
                : 09 June 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 73, Pages: 8, Words: 0
                Categories
                Immunology
                Review

                Immunology
                aryl hydrocarbon receptor,t1d,immune response,ahr ligands,therapeutic target
                Immunology
                aryl hydrocarbon receptor, t1d, immune response, ahr ligands, therapeutic target

                Comments

                Comment on this article