6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heavy metal bio-accumulation in the kidneys of scaly and non-scaly fishes from Epe Lagoon, Nigeria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMEN “Bioacumulación de metales pesados en los riñones de peces escamosos y no escamosos de la Laguna Epe, Nigeria”. Introducción: La contaminación por metales pesados de los ecosistemas acuáticos ha sido una gran preocupación en todo el mundo durante muchas décadas y ha causado efectos devastadores en los organismos acuáticos. Objetivo: Evaluar los niveles de Cu, Zn, Fe, Pb y Cd en los riñones de peces escamosos (T. zillii, M. rume y R. ocellatus) y no escamosos (C. gariepinus, Ch. Nigrodigitatus y S. filamentosus) en la Laguna Epe, Nigeria, para comprender el potencial de bioacumulación del riñón en relación con otros órganos en peces que se han descrito anteriormente en la literatura. Métodos: Estudiamos las concentraciones de cobre (Cu), hierro (Fe), zinc (Zn), cadmio (Cd) y plomo (Pb) en los riñones de 141 peces escamosos (M. rume, R. occellatus, T. zillii) y 134 peces no escamosos (C. gariepinus, S. filamentosus, Ch. nigrodigitatus) y muestras de agua obtenidas de la Laguna Epe utilizando métodos estándar de espectrometría de absorción atómica. Resultados: Los riñones de R. ocellatus tuvieron los niveles más altos de Fe (2,92±0,10) y Cd (0,18±0,03), mientras que el de Ch. nigrodigitatus (2,78±0,02) y T. zillii (0,31±0,02) tuvieron la concentración más baja de Fe y Cd, respectivamente. T. zillii y M. rume acumularon Cu y Zn en sus riñones, respectivamente, más que los otros. No hubo diferencias significativas (p<0,05) en las concentraciones medias de metales traza entre los peces escamosos y no escamosos. Las concentraciones de metales en las muestras de peces estaban por debajo de los límites máximos permisibles por la FEPA y la OMS para peces comestibles. El oxígeno disuelto (9,0±0,02) y la alcalinidad total (24,0±0,01) estaban por encima de los valores de FEPA (oxígeno disuelto: 3,0-5,0mg/L y la alcalinidad total: 3,05-5, 3mg/L). La clasificación de la distribución de metales pesados en el cuerpo de agua fue Cu (4,70)> Fe (0,72)> Zn (0,13)> Pb (0,007)> Cd (0,006). El factor de bioconcentración de Zn fue generalmente alto en todas las especies. Conclusión: El monitoreo cercano de estos metales en los peces y la laguna es importante para garantizar la seguridad de los consumidores de pescado en el área.

          Translated abstract

          ABSTRACT Introduction: Heavy metal contamination of aquatic ecosystems has been a serious concern throughout the world for many decades, and has caused devastating effects on aquatic organisms. Objective: To evaluate the levels of Cu, Zn, Fe, Pb and Cd in the kidneys of scaly (T. zillii, M. rume and R. ocellatus) and non-scaly (C. gariepinus, Ch. nigrodigitatus and S. filamentosus) fishes in Epe lagoon, Nigeria to understanding the bioaccumulation potential of the kidney relative to other organs in fish that have previously been reported in literature. Methods: We studied concentrations of copper (Cu), iron (Fe), zinc (Zn), cadmium (Cd) and lead (Pb) in the kidneys of 141 scaly fishes (Mo. rume, R. occellatus, T. zillii) and 134 non-scaly fishes (C. gariepinus, S.filamentosus, Ch. nigrodigitatus) and water samples obtained from Epe Lagoon using Standard Atomic Absorption Spectrometry methods. Results: The kidneys of R. ocellatus had the highest levels of Fe (2,92±0,10) and Cd (0,18±0,03), while that of Ch. nigrodigitatus (2,78±0,02) and T. zillii (0,31±0,02) had the lowest concentration of Fe and Cd respectively. T. zillii and M. rume accumulated Cu and Zn in their kidneys respectively more than the others. There was no significant difference (p<0,05) in mean trace metal concentrations among the scaly and non-scaly fishes. The concentrations of metals in fish specimens were below the FEPA and WHO prescribed maximum allowable limits in food fish. Dissolved oxygen (9,0±0,02) and total alkalinity (24,0±0,01) were above FEPA values (dissolved oxygen: 3,0-5,0mg/L and total alkalinity: 3,05-5,3mg/L). The ranking of heavy metals distribution in the water body was Cu (4,70)>Fe (0,72)>Zn (0,13)>Pb (0,007)>Cd (0,006). Bioconcentration factor of Zn was generally high in all species. Conclusion: Close monitoring of these metals in the fishes and the lagoon is important to ensure the safety of fish consumers in the area.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

          Levels of Zn, Cu, Cd, As, and Pb in the kidney, Liver, Gills and Heart of African cat fish (Clarias gariepinus) from the Ogun River in Ogun State located close to six major industries in the South Western part of Nigeria, were determined using Bulk Scientific Atomic Absorption Spectrophotometer. Fishes were also collected from Government owned fish farm in Agodi, Ibadan which was considered a reference site. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione (GSH) concentration and malondialdehyde (MDA) formation were also determined. The trend of accumulation of the metals in the organs is as follows: Heart - Zn > Cu > Pb > As > Cd; Gills - Zn > Cu > Pb > Cd > As; Kidney - Zn > Cu > Pb > As > Cd; Liver -Zn > Cu > Pb > As > Cd. The order of concentration of the metals in the organs is as follows: Arsenite - Kidney > Liver > Gills > Heart; Zinc - Gills > Liver > Kidney > Heart; Lead- Liver > Kidney > Gills > Heart; Copper- Kidney > Liver > Gills > Heart; Cadmium > Liver > Gills > Kidney > Heart. The levels of heavy metals ranged between 0.25–8.96 ppm in the heart, 0.69– 19.05 ppm in the kidneys, 2.10–19.75 ppm in the liver and 1.95–20.35 ppm in the gills. SOD activity increased by 61% in the liver, 50% in the kidney and in the heart by 28 % while a significant decrease (44%) was observed in the gill of Clarias gariepinus from Ogun river compared to that Agodi fish farm (P<0.001). On the contrary there was 46%, 41%, 50% and 19% decrease in CAT activity in the liver, kidney, gills and heart respectively. The levels of GST activities in the liver, kidney and heart of Clarias gariepinus from Ogun river increased by 62%, 72% and 37% respectively (P<0.001) whereas there was a significant decrease (41%) in the gills (P<0.05) compared to that from the Agodi fish farm. GSH concentration increased by 81%, 83% and 53% in the liver, kidney and heart respectively but decreased by 44% in the gills. MDA levels of Clarias gariepinus were significantly (P<0.001) elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent Developments in Low-Level Lead Exposure and Intellectual Impairment in Children

            In the last decade children’s blood lead levels have fallen significantly in a number of countries, and current mean levels in developed countries are in the region of 3 μg/dL. Despite this reduction, childhood lead poisoning continues to be a major public health problem for certain at-risk groups of children, and concerns remain over the effects of lead on intellectual development in infants and children. The evidence for lowered cognitive ability in children exposed to lead has come largely from prospective epidemiologic studies. The current World Health Organization/Centers for Disease Control and Prevention blood level of concern reflects this and stands at 10 μg/dL. However, a recent study on a cohort of children whose lifetime peak blood levels were consistently < 10 μg/dL has extended the association of blood lead and intellectual impairment to lower levels of lead exposure and suggests there is no safety margin at existing exposures. Because of the importance of this finding, we reviewed this study in detail along with other recent developments in the field of low-level lead exposure and children’s cognitive development. We conclude that these findings are important scientifically, and efforts should continue to reduce childhood exposure. However, from a public health perspective, exposure to lead should be seen within the many other risk factors impacting on normal childhood development, in particular the influence of the learning environment itself. Current lead exposure accounts for a very small amount of variance in cognitive ability (1–4%), whereas social and parenting factors account for 40% or more.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Effect of Heavy Metals on, and Handling by, the Kidney

              Heavy metals such as cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr) and platinum (Pt) are a major environmental and occupational hazard. Unfortunately, these non-essential elements are toxic at very low doses and non-biodegradable with a very long biological half-life. Thus, exposure to heavy metals is potentially harmful. Because of its ability to reabsorb and accumulate divalent metals, the kidney is the first target organ of heavy metal toxicity. The extent of renal damage by heavy metals depends on the nature, the dose, route and duration of exposure. Both acute and chronic intoxication have been demonstrated to cause nephropathies, with various levels of severity ranging from tubular dysfunctions like acquired Fanconi syndrome to severe renal failure leading occasionally to death. Very varied pathways are involved in uptake of heavy metals by the epithelium, depending on the form (free or bound) of the metal and the segment of the nephron where reabsorption occurs (proximal tubule, loop of Henle, distal tubule and terminal segments). In this review, we address the putative uptake pathways involved along the nephron, the mechanisms of intracellular sequestration and detoxification and the nephropathies caused by heavy metals. We also tackle the question of the possible therapeutic means of decreasing the toxic effect of heavy metals by increasing their urinary excretion without affecting the renal uptake of essential trace elements. We have chosen to focus mainly on Cd, Hg and Pb and on in vivo studies.
                Bookmark

                Author and article information

                Journal
                cinn
                Cuadernos de Investigación UNED
                Cuadernos de Investigación UNED
                Universidad Estatal a Distancia de Costa Rica (Sabanilla, Montes de Oca, Sabanilla, Montes de Oca, Costa Rica )
                1659-4266
                1659-4266
                June 2019
                : 11
                : 2
                : 201-211
                Affiliations
                [2] Idi-Araba Lagos orgnameUniversity of Lagos orgdiv1College of Medicine orgdiv2partment of Pharmacology, Therapeutics & Toxicology Nigeria awodeleo@ 123456gmail.com
                [1] Ilorin orgnameUniversity of Ilorin orgdiv1Department of Zoology Nigeria olulabi47@ 123456yahoo.com
                Article
                S1659-42662019000200201 S1659-4266(19)01100200201
                10.22458/urj.v11i2.2307
                0c00e42e-7124-4f38-96ae-23cd8e7b25e8

                This work is licensed under a Creative Commons Attribution 3.0 International License.

                History
                : 01 September 2018
                : 30 January 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 62, Pages: 11
                Product

                SciELO Costa Rica

                Categories
                Artículo

                bioconcentration factor,kidney,Epe Lagoon,heavy metals,fishes,riñón,factor de bioconcentración,Laguna Epe,metales pesados,peces

                Comments

                Comment on this article