28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references331

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in catalytic hydrogenation of carbon dioxide.

          Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.

            This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon capture and conversion using metal–organic frameworks and MOF-based materials

              This review summarizes recent advances and highlights the structure–property relationship on metal–organic framework-based materials for carbon dioxide capture and conversion. Rapidly increasing atmospheric CO 2 concentrations threaten human society, the natural environment, and the synergy between the two. In order to ameliorate the CO 2 problem, carbon capture and conversion techniques have been proposed. Metal–organic framework (MOF)-based materials, a relatively new class of porous materials with unique structural features, high surface areas, chemical tunability and stability, have been extensively studied with respect to their applicability to such techniques. Recently, it has become apparent that the CO 2 capture capabilities of MOF-based materials significantly boost their potential toward CO 2 conversion. Furthermore, MOF-based materials’ well-defined structures greatly facilitate the understanding of structure–property relationships and their roles in CO 2 capture and conversion. In this review, we provide a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion. Special emphases on the relationships between CO 2 capture capacities of MOF-based materials and their catalytic CO 2 conversion performances are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Reviews
                Chem. Rev.
                American Chemical Society (ACS)
                0009-2665
                1520-6890
                August 12 2020
                February 12 2020
                August 12 2020
                : 120
                : 15
                : 7984-8034
                Affiliations
                [1 ]School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
                [2 ]State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
                [3 ]Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
                [4 ]EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
                Article
                10.1021/acs.chemrev.9b00723
                32049507
                0c0c58f5-2fbe-4e0a-982e-19e1f0fabb18
                © 2020
                History

                Comments

                Comment on this article