12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increase in Leptin and PPAR-γ Gene Expression in Lipedema Adipocytes Differentiated in vitro from Adipose-Derived Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipedema is a painful loose connective tissue disorder characterized by a bilaterally symmetrical fat deposition in the lower extremities. The goal of this study was to characterize the adipose-derived stem cells (ASCs) of healthy and lipedema patients by the expression of stemness markers and the adipogenic and osteogenic differentiation potential. Forty patients, 20 healthy and 20 with lipedema, participated in this study. The stromal vascular fraction (SVF) was obtained from subcutaneous thigh (SVF-T) and abdomen (SVF-A) fat and plated for ASCs characterization. The data show a similar expression of mesenchymal markers, a significant increase in colonies ( p < 0.05) and no change in the proliferation rate in ASCs isolated from the SVF-T or SVF-A of lipedema patients compared with healthy patients. The leptin gene expression was significantly increased in lipedema adipocytes differentiated from ASCs-T ( p = 0.04) and the PPAR-γ expression was significantly increased in lipedema adipocytes differentiated from ASCs-A ( p = 0.03) compared to the corresponding cells from healthy patients. No significant changes in the expression of genes associated with inflammation were detected in lipedema ASCs or differentiated adipocytes. These results suggest that lipedema ASCs isolated from SVF-T and SVF-A have a higher adipogenic differentiation potential compared to healthy ASCs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Contribution of adipogenesis to healthy adipose tissue expansion in obesity

          The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the “metabolically healthy” obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers

            Introduction The steady increase in the incidence of obesity among adults has been paralleled with higher levels of obesity-associated breast cancer. While recent studies have suggested that adipose stromal/stem cells (ASCs) isolated from obese women enhance tumorigenicity, the mechanism(s) by which this occurs remains undefined. Evidence suggests that increased adiposity results in increased leptin secretion from adipose tissue, which has been shown to increased cancer cell proliferation. Previously, our group demonstrated that ASCs isolated from obese women (obASCs) also express higher levels of leptin relative to ASCs isolated from lean women (lnASCs) and that this obASC-derived leptin may account for enhanced breast cancer cell growth. The current study investigates the impact of inhibiting leptin expression in lnASCs and obASCs on breast cancer cell (BCC) growth and progression. Methods Estrogen receptor positive (ER+) BCCs were co-cultured with leptin shRNA lnASCs or leptin shRNA obASCs and changes in the proliferation, migration, invasion, and gene expression of BCCs were investigated. To assess the direct impact of leptin inhibition in obASCs on BCC proliferation, MCF7 cells were injected alone or mixed with control shRNA obASCs or leptin shRNA obASCs into SCID/beige mice. Results ER+ BCCs were responsive to obASCs during direct co-culture, whereas lnASCs were unable to increase ER+ BCC growth. shRNA silencing of leptin in obASCs negated the enhanced proliferative effects of obASC on BCCs following direct co-culture. BCCs co-cultured with obASCs demonstrated enhanced expression of epithelial-to-mesenchymal transition (EMT) and metastasis genes (SERPINE1, MMP-2, and IL-6), while BCCs co-cultured with leptin shRNA obASCs did not display similar levels of gene induction. Knockdown of leptin significantly reduced tumor volume and decreased the number of metastatic lesions to the lung and liver. These results correlated with reduced expression of both SERPINE1 and MMP-2 in tumors formed with MCF7 cells mixed with leptin shRNA obASCs, when compared to tumors formed with MCF7 cells mixed with control shRNA obASCs. Conclusion This study provides mechanistic insight as to how obesity enhances the proliferation and metastasis of breast cancer cells; specifically, obASC-derived leptin contributes to the aggressiveness of breast cancer in obese women. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0622-z) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cross-Talk between PPARγ and Insulin Signaling and Modulation of Insulin Sensitivity

              PPARγ activation in type 2 diabetic patients results in a marked improvement in insulin and glucose parameters, resulting from an improvement of whole-body insulin sensitivity. Adipose tissue is the major mediator of PPARγ action on insulin sensitivity. PPARγ activation in mature adipocytes induces the expression of a number of genes involved in the insulin signaling cascade, thereby improving insulin sensitivity. PPARγ is the master regulator of adipogenesis, thereby stimulating the production of small insulin-sensitive adipocytes. In addition to its importance in adipogenesis, PPARγ plays an important role in regulating lipid, metabolism in mature adipocytes by increasing fatty acid trapping. Finally, adipose tissue produces several cytokines that regulate energy homeostasis, lipid and glucose metabolism. Disturbances in the production of these factors may contribute to metabolic abnormalities, and PPARγ activation is also associated with beneficial effects on expression and secretion of a whole range of cytokines.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                12 February 2020
                February 2020
                : 9
                : 2
                : 430
                Affiliations
                [1 ]Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, USA; zdiaz@ 123456tulane.edu (Z.T.D.); hsinger2@ 123456tulane.edu (H.J.S.); kmert@ 123456tulane.edu (K.B.M.)
                [2 ]Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
                Author notes
                [* ]Correspondence: salghadban@ 123456tulane.edu (S.A.-G.); bbunnell@ 123456tulane.edu (B.A.B.); Tel.: +1-504-988-7071 (B.A.B.)
                Author information
                https://orcid.org/0000-0001-8544-5751
                https://orcid.org/0000-0001-6196-3722
                Article
                cells-09-00430
                10.3390/cells9020430
                7072543
                32059474
                0c1652da-6393-4507-80fc-2663ccf5cc1e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 January 2020
                : 07 February 2020
                Categories
                Article

                lipedema,adipose-derived stem cells (ascs),stromal vascular fraction (svf) adipocyte differentiation,adipogenesis,inflammation

                Comments

                Comment on this article